Advertisement

Thermal Management of Electronics Using Sprays and Droplets

  • Anandaroop Bhattacharya
  • Je-young Chang
  • Nicholas S. Haehn
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

The continuous increase in power density in electronic devices coupled with miniaturization has resulted in heat fluxes going beyond 100 W/m2 where conventional cooling methods are unable to maintain the temperatures within the prescribed limits. Further, most of the electronic components have non-uniform power generation across its surface area resulting in localized hot spots of elevated temperatures. This has forced researchers and engineers to look beyond air liquid cooling and single-phase liquid cooling into newer methods that are efficient, cost-effective, and reliable.

Notes

Acknowledgements

The authors gratefully acknowledge the help of Mr. Golak Kunti, research scholar at IIT Kharagpur, for his help with editing and formatting of the write-up. Thanks are also due to all our colleagues at Intel and IIT Kharagpur for the many stimulating discussions and exchange of information on this topic that helped enrich the contents of the chapter.

References

  1. Alavi S, Kazemi A, Passandideh-Fard M (2015) Hot-spot cooling using microliter liquid drops. Appl Therm Eng 76:310–323CrossRefGoogle Scholar
  2. Bahadur V, Garimella SV (2008) Energy minimization-based analysis of electrowetting for microelectronics cooling applications. Microelectron J. 39:957–965CrossRefGoogle Scholar
  3. Bindiganavale G, You SM, Moon H (2014) Study of hotspot cooling using electrowetting on dielectric digital microfluidic system. In: Proceedings of IEEE international conference on micro electro mechanical systems, pp 1039–1042 (2014)Google Scholar
  4. Boreyko JB, Chen C-H (2013) Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. Int J Heat Mass Transf 61:409–418CrossRefGoogle Scholar
  5. Boreyko JB, Zhao Y, Chen C-H (2011) Planar jumping-drop thermal diodes. Appl Phys Lett 99:234105CrossRefGoogle Scholar
  6. Bostanci H, He B, Chow LC (2017) Spray cooling with ammonium hydroxide. Int J Heat Mass Transf 107:45–52CrossRefGoogle Scholar
  7. Chakraborty M, Anand R, Rao PS, Sen S, DasGupta S (2017) Oscillating nanofluid droplet for micro-cooling. Sensors Actuators B Chem 239:562–570CrossRefGoogle Scholar
  8. Chakraborty M, Ghosh A, Dasgupta S (2014) Enhanced microcooling by electrically induced droplet oscillation. RSC Adv 4:1074–1082CrossRefGoogle Scholar
  9. Chen H, Cheng W-L, Peng Y-H, Zhang W-W, Jiang L-J (2016) Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling. International J Heat Mass Transf 103(C):57–65CrossRefGoogle Scholar
  10. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–339CrossRefGoogle Scholar
  11. Chen X, Weibel JA, Garimella SV (2017) Characterization of coalescence-induced droplet jumping height on hierarchical superhydrophobic surfaces. ACS Omega 2:2883–2890CrossRefGoogle Scholar
  12. Cheng J-T, Chen C-L (2010) Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics. Exp Fluids 49:1349–1357CrossRefGoogle Scholar
  13. Cheng W-L, Zhang W-W, Chen H, Hu L (2016) Spray cooling and flash evaporation cooling: the current development and application. Renew Sustain Energy Rev 55:614–628CrossRefGoogle Scholar
  14. Cheng W-L, Zhang W-W, Shao S-D, Jiang L-J, Hong D-L (2015) Effects of inclination angle on plug-chip spray cooling in integrated enclosure. Appl Thermal Eng 91(C):202–209CrossRefGoogle Scholar
  15. Demiray F, Kim J (2004) Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int J Heat Mass Transf 47:3257–3268CrossRefGoogle Scholar
  16. Duan RQ, Koshizuka S, Yoshiaki O (2003) Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nucl Eng Des 225:37–48CrossRefGoogle Scholar
  17. Garimella SV, Fleischer AS, Murphy JY et al (2008) Thermal challenges in next-generation electronic systems. IEEE Trans Compon Packag Technol 31(4):801–815CrossRefGoogle Scholar
  18. Hassan I, Phutthavong P, Abdelgawad M (2004) Microchannel heat sinks: an overview of the state-of-the-art. Microscale Thermophys Eng 8:183–205CrossRefGoogle Scholar
  19. Hale RS, Bahadur V (2015) Electrowetting heat pipes for heat transport over extended distances. IEEE Trans Compon Packag Manuf. Technol 5:1441–1450CrossRefGoogle Scholar
  20. Horacek B, Kiger K, Kim J (2005) Single nozzle spray cooling heat transfer mechanisms. Int J Heat Mass Transf 48(8):1425–1438CrossRefGoogle Scholar
  21. Kandlikar SG (2014) Review and projections of integrated cooling systems for three-dimensional integrated circuits. ASME J Electron Packag 136:024001CrossRefGoogle Scholar
  22. Kim JH (2007) Spray cooling heat transfer: the state of the art. Int J Heat Fluid Flow 28(4):753–767CrossRefGoogle Scholar
  23. Liang G, Mudawar I (2017) Review of spray cooling—Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transf (in press)Google Scholar
  24. Lin L, Ponnappan R (2003) Heat transfer characteristics of spray cooling in a closed loop. Int J Heat Mass Transf 46(20):3737–3746CrossRefGoogle Scholar
  25. Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94(8):1476–1486CrossRefGoogle Scholar
  26. Martinez-Galvan E, Ramos JC, Anton R, Khodabandeh R (2011) Film thickness and heat transfer measurements in a spray cooling system with R134a. J Electron Packag 133(1)Google Scholar
  27. Mesler R, Mailen G (1977) Nucleate boiling in thin liquid films. AIChE J 23:954–957CrossRefGoogle Scholar
  28. Mesler R (1992) Improving nucleate boiling using secondary nucleation. In: Proceedings of engineering foundation conference, pool and external flow boiling, pp 43–47Google Scholar
  29. Migliaccio CP, Garimella SV (2013) Evaporative heat transfer from an electrowetted liquid ribbon on a heated substrate. Int J Heat Mass Transf 57:73–81CrossRefGoogle Scholar
  30. Miljkovic N, Preston DJ, Enright R, Wang EN (2013a) Electrostatic charging of jumping droplets. Nat Commun 4:2517Google Scholar
  31. Miljkovic N, Preston DJ, Enright R, Wang EN (2013b) Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. ACS Nano 7:11043–11054CrossRefGoogle Scholar
  32. Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651CrossRefGoogle Scholar
  33. Mudawar I (2013) Recent advances in high-flux, two-phase thermal management. ASME J Thermal Sci Eng Appl 5:021012CrossRefGoogle Scholar
  34. Mudawar I (2011) Assessment of high-heat-flux thermal management schemes. IEEE Trans Compon Packag Technol 24(2):122–141CrossRefGoogle Scholar
  35. Mudawar I, Bharathan D, Kelly K, Narumanchi S (2009) Two-phase spray cooling of hybrid vehicle electronics. IEEE Trans Compon Packag Technol 32(2):501–512CrossRefGoogle Scholar
  36. Nukiyama S (1966) The maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf 9:1419CrossRefGoogle Scholar
  37. Oh J, Birbarah P, Foulkes T, Yin SL, Rentauskas M, Neely J, Pilawa-Podgurski RCN, Miljkovic N (2017) Jumping-droplet electronics hot-spot cooling. Appl Phys Lett 110:1–6Google Scholar
  38. Paik PY, Pamula VK, Chakrabarty K (2008) Adaptive cooling of integrated circuits using digital microfluidics. IEEE Trans Very Large Scale Integr Syst 16:432–443CrossRefGoogle Scholar
  39. Pamula VK, Chakrabarty K (2003) Cooling of integrated circuits using droplet-based microfluidics. In: Proceedings of the 13th ACM great lakes symposium on—GLSVLSI ’03, p 84Google Scholar
  40. Rini DP, Chen RH, Chow LC (2002) Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling. ASME J Heat Transf 124(1):63–72CrossRefGoogle Scholar
  41. Shahriari A, Birbarah P, Oh J, Miljkovic N, Bahadur V (2016) Electric field-based control and enhancement of boiling and condensation. Nanoscale Microscale Thermophys Eng 21:1–20Google Scholar
  42. Sharma CS, Tiwari MK, Zimmermann S, Brunschwiler T, Schlottig G, Michel B, Poulikakos D (2015) Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl Energy 138:414–422CrossRefGoogle Scholar
  43. Shedd TA (2007) Next generation spray cooling: high heat flux management in compact spaces. Heat Transf Eng 28:87–92CrossRefGoogle Scholar
  44. Silk EA, Golliher EL, Selvam RP (2008) Spray cooling heat transfer: technology overview and assessment of future challenges for micro-gravity application. Energy Convers Manag 49:453–468CrossRefGoogle Scholar
  45. Tseng AA, Raudensky M, Lee T-W (2016) Liquid sprays for heat transfer enhancements: a review. Heat Transf Eng 37:1401–1417CrossRefGoogle Scholar
  46. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2:126–129CrossRefGoogle Scholar
  47. Watwe A, Viswanath R (2003) Thermal implications of non-uniform die power and CPU performance. In: Proceedings of InterPack ’03 conference, Paper No. IPACK 2003-35044, Maui, Hawaii, 6–11 JulyGoogle Scholar
  48. Webb RL (2005) Next generation devices for electronic cooling with heat rejection to air. ASME J Heat Transf 127(1):2–10CrossRefGoogle Scholar
  49. Webb RL (1994) Principles of enhanced heat transfer. Wiley, New YorkGoogle Scholar
  50. Wiedenheft KF, Guo HA, Qu X, Boreyko JB, Liu F, Zhang K, Eid F, Choudhury A, Li Z, Chen CH (2017) Hotspot cooling with jumping-drop vapor chambers. Appl Phys Lett 110Google Scholar
  51. Xie JL, Tan YB, Wong TN, Duan F, Toh KC, Choo KF, Chan PK, Chua YS (2014) Multi-nozzle array spray cooling for large area high power devices in a closed loop system. Int J Heat Mass Transf 78:1177–1186CrossRefGoogle Scholar
  52. Yang BH, Wang H, Zhu X, Liao Q, Ding YD, Chen R (2013) Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces. Appl Therm Eng 50(1):245–250CrossRefGoogle Scholar
  53. Yang J, Chow LC, Pais MR (1996) Nucleate boiling heat transfer in spray cooling. ASME J Heat Transf 118:668–671CrossRefGoogle Scholar
  54. Zhang Z, Jiang P-X, Ouyang X-L, Chen J-N, Christopher DM (2014) Experimental investigation of spray cooling on smooth and micro-structured surfaces. Int J Heat Mass Transf 76(C):366–375CrossRefGoogle Scholar
  55. Zhao R, Cheng W-L, Liu Q-N, Fan H-L (2010) Study on heat transfer performance of spray cooling: model and analysis. Heat Mass Transf 46:821–829CrossRefGoogle Scholar
  56. Zhu JY, Tang SY, Khoshmanesh K, Ghorbani K (2016) An integrated liquid cooling system based on Galinstan liquid metal droplets. ACS Appl Mater Interfaces 8:2173–2180CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anandaroop Bhattacharya
    • 1
  • Je-young Chang
    • 2
  • Nicholas S. Haehn
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology, KharagpurKharagpurIndia
  2. 2.Intel CorporationChandlerUSA

Personalised recommendations