Abstract
The successful entry of herpes simplex virus (HSV) into a cell is a complex process requiring the interaction of several surface viral glycoproteins with host cell receptors. These viral glycoproteins are currently thought to work sequentially to trigger fusogenic activity, but the process is complicated by the fact that each glycoprotein is known to interact with a range of target cell surface receptor molecules. The glycoproteins concerned are gB, gD, and gH/gL, with at least four host cell receptor molecules known to bind to gB and gD alone. Redundancy among gD receptors is also evident and binding to both the gB and gD receptors simultaneously is known to be required for successful membrane fusion. Receptor type and tissue distribution are commonly considered to define the extent of viral tropism and thus the magnitude of pathogenesis. Viral entry receptors are therefore attractive pharmaceutical target molecules for the prevention and/or treatment of viral infections. However, the large number of HSV glycoprotein receptors makes a comprehensive understanding of HSV pathogenesis in vivo difficult. Here we summarize our current understanding of the various HSV glycoprotein cell surface receptors, define their redundancy and binding specificity, and discuss the significance of these interactions for viral pathogenesis.
Keywords
- HSV
- Glycoprotein
- Entry
- Receptor
- Pathogenesis
- Tropism
This is a preview of subscription content, access via your institution.
Buying options


References
Arii J, Uema M, Morimoto T, Sagara H, Akashi H, Ono E, Arase H, Kawaguchi Y (2009) Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor alpha. J Virol 83(9):4520–4527. https://doi.org/10.1128/JVI.02601-08
Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y (2010a) Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature 467(7317):859–862. https://doi.org/10.1038/nature09420
Arii J, Wang J, Morimoto T, Suenaga T, Akashi H, Arase H, Kawaguchi Y (2010b) A single-amino-acid substitution in herpes simplex virus 1 envelope glycoprotein B at a site required for binding to the paired immunoglobulin-like type 2 receptor alpha (PILRalpha) abrogates PILRalpha-dependent viral entry and reduces pathogenesis. J Virol 84(20):10773–10783. https://doi.org/10.1128/JVI.01166-10
Arii J, Hirohata Y, Kato A, Kawaguchi Y (2015) Nonmuscle myosin heavy chain IIb mediates herpes simplex virus 1 entry. J Virol 89(3):1879–1888. https://doi.org/10.1128/JVI.03079-14
Atanasiu D, Whitbeck JC, Cairns TM, Reilly B, Cohen GH, Eisenberg RJ (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci U S A 104(47):18718–18723. https://doi.org/10.1073/pnas.0707452104
Atanasiu D, Saw WT, Cohen GH, Eisenberg RJ (2010) Cascade of events governing cell-cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol 84(23):12292–12299. https://doi.org/10.1128/JVI.01700-10
Atanasiu D, Saw WT, Eisenberg RJ, Cohen GH (2016) Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion. J Virol 90:10535. https://doi.org/10.1128/JVI.01501-16
Avitabile E, Forghieri C, Campadelli-Fiume G (2007) Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 81(20):11532–11537. https://doi.org/10.1128/JVI.01343-07
Backovic M, Jardetzky TS (2009) Class III viral membrane fusion proteins. Curr Opin Struct Biol 19(2):189–196. https://doi.org/10.1016/j.sbi.2009.02.012
Baines JD, Ward PL, Campadelli-Fiume G, Roizman B (1991) The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress. J Virol 65(12):6414–6424
Banfield BW, Leduc Y, Esford L, Schubert K, Tufaro F (1995) Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: evidence for a proteoglycan-independent virus entry pathway. J Virol 69(6):3290–3298
Bender FC, Whitbeck JC, Lou H, Cohen GH, Eisenberg RJ (2005) Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J Virol 79(18):11588–11597. https://doi.org/10.1128/JVI.79.18.11588-11597.2005
Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, Cunningham AL (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174(4):2220–2227
Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8(1):169–179
Cheng H, Tumpey TM, Staats HF, van Rooijen N, Oakes JE, Lausch RN (2000) Role of macrophages in restricting herpes simplex virus type 1 growth after ocular infection. Invest Ophthalmol Vis Sci 41(6):1402–1409
Cheshenko N, Trepanier JB, Gonzalez PA, Eugenin EA, Jacobs WR Jr, Herold BC (2014) Herpes simplex virus type 2 glycoprotein H interacts with integrin alphavbeta3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J Virol 88(17):10026–10038. https://doi.org/10.1128/JVI.00725-14
Chouljenko VN, Iyer AV, Chowdhury S, Chouljenko DV, Kousoulas KG (2009) The amino terminus of herpes simplex virus type 1 glycoprotein K (gK) modulates gB-mediated virus-induced cell fusion and virion egress. J Virol 83(23):12301–12313. https://doi.org/10.1128/JVI.01329-09
Chouljenko VN, Iyer AV, Chowdhury S, Kim J, Kousoulas KG (2010) The herpes simplex virus type 1 UL20 protein and the amino terminus of glycoprotein K (gK) physically interact with gB. J Virol 84(17):8596–8606. https://doi.org/10.1128/JVI.00298-10
Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE (2010) Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17(7):882–888. https://doi.org/10.1038/nsmb.1837
Chowdhury S, Chouljenko VN, Naderi M, Kousoulas KG (2013) The amino terminus of herpes simplex virus 1 glycoprotein K is required for virion entry via the paired immunoglobulin-like type-2 receptor alpha. J Virol 87(6):3305–3313. https://doi.org/10.1128/JVI.02982-12
Conti MA, Even-Ram S, Liu C, Yamada KM, Adelstein RS (2004) Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem 279(40):41263–41266. https://doi.org/10.1074/jbc.C400352200
Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C, Carfi A (2011) Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog 7(9):e1002277. https://doi.org/10.1371/journal.ppat.1002277
Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH (2012) Herpes virus fusion and entry: a story with many characters. Virus 4(5):800–832. https://doi.org/10.3390/v4050800
Fan Q, Longnecker R (2010) The Ig-like v-type domain of paired Ig-like type 2 receptor alpha is critical for herpes simplex virus type 1-mediated membrane fusion. J Virol 84(17):8664–8672. https://doi.org/10.1128/JVI.01039-10
Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, Patel S, Zlot C, Gorman D, Zurawski S, Abrams J, Bates EE, Garrone P (2000) FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells. J Immunol 165(3):1197–1209
Galdiero M, Whiteley A, Bruun B, Bell S, Minson T, Browne H (1997) Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J Virol 71(3):2163–2170
Gao J, Xiao S, Xiao Y, Wang X, Zhang C, Zhao Q, Nan Y, Huang B, Liu H, Liu N, Lv J, Du T, Sun Y, Mu Y, Wang G, Syed SF, Zhang G, Hiscox JA, Goodfellow I, Zhou EM (2016) MYH9 is an essential factor for porcine reproductive and respiratory syndrome virus infection. Sci Rep 6:25120. https://doi.org/10.1038/srep25120
Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280(5369):1618–1620
Gianni T, Gatta V, Campadelli-Fiume G (2010) {alpha}V{beta}3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. Proc Natl Acad Sci U S A 107(51):22260–22265. https://doi.org/10.1073/pnas.1014923108
Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli-Fiume G (2013) alphavbeta6- and alphavbeta8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog 9(12):e1003806. https://doi.org/10.1371/journal.ppat.1003806
Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313(5784):217–220. https://doi.org/10.1126/science.1126548
Herold BC, WuDunn D, Soltys N, Spear PG (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol 65(3):1090–1098
Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG (1994) Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75(Pt 6):1211–1222. https://doi.org/10.1099/0022-1317-75-6-1211
Hutchinson L, Johnson DC (1995) Herpes simplex virus glycoprotein K promotes egress of virus particles. J Virol 69(9):5401–5413
Jayachandra S, Baghian A, Kousoulas KG (1997) Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production in actively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space. J Virol 71(7):5012–5024
Kadlec J, Loureiro S, Abrescia NG, Stuart DI, Jones IM (2008) The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol 15(10):1024–1030. https://doi.org/10.1038/nsmb.1484
Karaba AH, Kopp SJ, Longnecker R (2011) Herpesvirus entry mediator and nectin-1 mediate herpes simplex virus 1 infection of the murine cornea. J Virol 85(19):10041–10047. https://doi.org/10.1128/JVI.05445-11
Karaba AH, Kopp SJ, Longnecker R (2012) Herpesvirus entry mediator is a serotype specific determinant of pathogenesis in ocular herpes. Proc Natl Acad Sci U S A 109(50):20649–20654. https://doi.org/10.1073/pnas.1216967109
Kodukula P, Liu T, Rooijen NV, Jager MJ, Hendricks RL (1999) Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J Immunol 162(5):2895–2905
Komala Sari T, Pritchard SM, Cunha CW, Wudiri GA, Laws EI, Aguilar HC, Taus NS, Nicola AV (2013) Contributions of herpes simplex virus 1 envelope proteins to entry by endocytosis. J Virol 87(24):13922–13926. https://doi.org/10.1128/JVI.02500-13
Kopp SJ, Banisadr G, Glajch K, Maurer UE, Grunewald K, Miller RJ, Osten P, Spear PG (2009) Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci U S A 106(42):17916–17920. https://doi.org/10.1073/pnas.0908892106
Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ, Cohen GH, Wiley DC, Carfi A (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 24(23):4144–4153. https://doi.org/10.1038/sj.emboj.7600875
Kuroki K, Wang J, Ose T, Yamaguchi M, Tabata S, Maita N, Nakamura S, Kajikawa M, Kogure A, Satoh T, Arase H, Maenaka K (2014) Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRalpha. Proc Natl Acad Sci U S A 111(24):8877–8882. https://doi.org/10.1073/pnas.1324105111
Laquerre S, Argnani R, Anderson DB, Zucchini S, Manservigi R, Glorioso JC (1998) Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 72(7):6119–6130
Lazear E, Carfi A, Whitbeck JC, Cairns TM, Krummenacher C, Cohen GH, Eisenberg RJ (2008) Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 82(2):700–709. https://doi.org/10.1128/JVI.02192-07
Ligas MW, Johnson DC (1988) A herpes simplex virus mutant in which glycoprotein D sequences are replaced by beta-galactosidase sequences binds to but is unable to penetrate into cells. J Virol 62(5):1486–1494
Lopez C (1975) Genetics of natural resistance to herpesvirus infections in mice. Nature 258(5531):152–153
Lu G, Zhang N, Qi J, Li Y, Chen Z, Zheng C, Gao GF, Yan J (2014) Crystal structure of herpes simplex virus 2 gD bound to nectin-1 reveals a conserved mode of receptor recognition. J Virol 88(23):13678–13688. https://doi.org/10.1128/JVI.01906-14
Lycke E, Hamark B, Johansson M, Krotochwil A, Lycke J, Svennerholm B (1988) Herpes simplex virus infection of the human sensory neuron. An electron microscopy study. Arch Virol 101(1–2):87–104
Mandai K, Rikitake Y, Mori M, Takai Y (2015) Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 112:197–231. https://doi.org/10.1016/bs.ctdb.2014.11.019
Manoj S, Jogger CR, Myscofski D, Yoon M, Spear PG (2004) Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc Natl Acad Sci U S A 101(34):12414–12421. https://doi.org/10.1073/pnas.0404211101
Melchjorsen J, Siren J, Julkunen I, Paludan SR, Matikainen S (2006) Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J Gen Virol 87(Pt 5):1099–1108. https://doi.org/10.1099/vir.0.81541-0
Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87(3):427–436
Nicola AV (2016) Herpesvirus entry into host cells mediated by endosomal low pH. Traffic 17(9):965–975. https://doi.org/10.1111/tra.12408
Nicola AV, Straus SE (2004) Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78(14):7508–7517. https://doi.org/10.1128/JVI.78.14.7508-7517.2004
Nicola AV, McEvoy AM, Straus SE (2003) Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77(9):5324–5332
Nicola AV, Hou J, Major EO, Straus SE (2005) Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79(12):7609–7616. https://doi.org/10.1128/JVI.79.12.7609-7616.2005
Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195(1):208–217. https://doi.org/10.1016/j.expneurol.2005.04.017
Parry C, Bell S, Minson T, Browne H (2005) Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins. J Gen Virol 86(Pt 1):7–10. https://doi.org/10.1099/vir.0.80567-0
Pellet PE, Roizman B (2013) Herpesviridae. In: Knipe DM, Howley PM, Cohen JI et al (eds) Fields virology, 6th edn. Lippincott-Williams &Wilkins, Philadelphia, pp 1802–1822
Richart SM, Simpson SA, Krummenacher C, Whitbeck JC, Pizer LI, Cohen GH, Eisenberg RJ, Wilcox CL (2003) Entry of herpes simplex virus type 1 into primary sensory neurons in vitro is mediated by Nectin-1/HveC. J Virol 77(5):3307–3311
Roche S, Bressanelli S, Rey FA, Gaudin Y (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313(5784):187–191. https://doi.org/10.1126/science.1127683
Rogalin HB, Heldwein EE (2015) Interplay between the herpes simplex virus 1 gB Cytodomain and the gH Cytotail during cell-cell fusion. J Virol 89(24):12262–12272. https://doi.org/10.1128/JVI.02391-15
Roizman B, Knipe DM, Whitley RJ (2013) Herpes simplex viruses. In: Knipe DM, Howley PM, Cohen JI et al (eds) Fields virology, 6th edn. Lippincott-Williams &Wilkins, Philadelphia, pp 1823–1897
Satoh T, Arii J, Suenaga T, Wang J, Kogure A, Uehori J, Arase N, Shiratori I, Tanaka S, Kawaguchi Y, Spear PG, Lanier LL, Arase H (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132(6):935–944. https://doi.org/10.1016/j.cell.2008.01.043
Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99(1):13–22
Silverman JL, Heldwein EE (2013) Mutations in the cytoplasmic tail of herpes simplex virus 1 gH reduce the fusogenicity of gB in transfected cells. J Virol 87(18):10139–10147. https://doi.org/10.1128/JVI.01760-13
Simpson SA, Manchak MD, Hager EJ, Krummenacher C, Whitbeck JC, Levin MJ, Freed CR, Wilcox CL, Cohen GH, Eisenberg RJ, Pizer LI (2005) Nectin-1/HveC mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J Neurovirol 11(2):208–218. https://doi.org/10.1080/13550280590924214
Spear PG, Manoj S, Yoon M, Jogger CR, Zago A, Myscofski D (2006) Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 344(1):17–24. https://doi.org/10.1016/j.virol.2005.09.016
Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H (2010) Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci U S A 107(2):866–871. https://doi.org/10.1073/pnas.0913351107
Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W (2014) Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol 88(1):237–248. https://doi.org/10.1128/JVI.02141-13
Taylor JM, Lin E, Susmarski N, Yoon M, Zago A, Ware CF, Pfeffer K, Miyoshi J, Takai Y, Spear PG (2007) Alternative entry receptors for herpes simplex virus and their roles in disease. Cell Host Microbe 2(1):19–28. https://doi.org/10.1016/j.chom.2007.06.005
Tullio AN, Accili D, Ferrans VJ, Yu ZX, Takeda K, Grinberg A, Westphal H, Preston YA, Adelstein RS (1997) Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci U S A 94(23):12407–12412
Turner A, Bruun B, Minson T, Browne H (1998) Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72(1):873–875
Uchida H, Shah WA, Ozuer A, Frampton AR Jr, Goins WF, Grandi P, Cohen JB, Glorioso JC (2009) Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition. J Virol 83(7):2951–2961. https://doi.org/10.1128/JVI.01449-08
Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790
Wang J, Fan Q, Satoh T, Arii J, Lanier LL, Spear PG, Kawaguchi Y, Arase H (2009) Binding of herpes simplex virus glycoprotein B (gB) to paired immunoglobulin-like type 2 receptor alpha depends on specific sialylated O-linked glycans on gB. J Virol 83(24):13042–13045. https://doi.org/10.1128/JVI.00792-09
Wang K, Kappel JD, Canders C, Davila WF, Sayre D, Chavez M, Pesnicak L, Cohen JI (2012) A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. J Virol 86(23):12891–12902. https://doi.org/10.1128/JVI.01055-12
Wang J, Shiratori I, Uehori J, Ikawa M, Arase H (2013) Neutrophil infiltration during inflammation is regulated by PILRalpha via modulation of integrin activation. Nat Immunol 14(1):34–40. https://doi.org/10.1038/ni.2456
Wang K, Goodman KN, Li DY, Raffeld M, Chavez M, Cohen JI (2015) A Herpes Simplex Virus 2 (HSV-2) gD mutant impaired for neural tropism is superior to an HSV-2 gD subunit vaccine to protect animals from challenge with HSV-2. J Virol 90(1):562–574. https://doi.org/10.1128/JVI.01845-15
Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246(1):179–189
Wittels M, Spear PG (1991) Penetration of cells by herpes simplex virus does not require a low pH-dependent endocytic pathway. Virus Res 18(2–3):271–290
Xiong D, Du Y, Wang HB, Zhao B, Zhang H, Li Y, Hu LJ, Cao JY, Zhong Q, Liu WL, Li MZ, Zhu XF, Tsao SW, Hutt-Fletcher LM, Song E, Zeng YX, Kieff E, Zeng MS (2015) Nonmuscle myosin heavy chain IIA mediates Epstein-Barr virus infection of nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A 112(35):11036–11041. https://doi.org/10.1073/pnas.1513359112
Zeev-Ben-Mordehai T, Vasishtan D, Hernandez Duran A, Vollmer B, White P, Prasad Pandurangan A, Siebert CA, Topf M, Grunewald K (2016) Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proc Natl Acad Sci U S A 113(15):4176–4181. https://doi.org/10.1073/pnas.1523234113
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Arii, J., Kawaguchi, Y. (2018). The Role of HSV Glycoproteins in Mediating Cell Entry. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_1
Download citation
DOI: https://doi.org/10.1007/978-981-10-7230-7_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7229-1
Online ISBN: 978-981-10-7230-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)