Abstract
Upon infection and depending on the infected cell type, human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one way to establish latency. Viral integration takes place near the subtelomeric/telomeric junction of chromosomes. When HHV-6 infection and integration occur in gametes, the virus can be genetically transmitted. Inherited chromosomally integrated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 2%, depending on the geographical region sampled. In this chapter, the mechanisms leading to viral integration and reactivation from latency, as well as some of the biological and medical consequences associated with iciHHV-6, were discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D, Gautheret-Dejean A, Agut H (2009) Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J Virol Methods 159 (1):127–130. S0166-0934(09)00104-9 [pii] https://doi.org/10.1016/j.jviromet.2009.03.002
Agut H, Bonnafous P, Gautheret-Dejean A (2015) Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 28(2):313–335. https://doi.org/10.1128/CMR.00122-14
Anand RP, Shah KA, Niu H, Sung P, Mirkin SM, Freudenreich CH (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40(3):1091–1105. https://doi.org/10.1093/nar/gkr836
Aoki J, Numata A, Yamamoto E, Fujii E, Tanaka M, Kanamori H (2015) Impact of human Herpesvirus-6 reactivation on outcomes of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21(11):2017–2022. https://doi.org/10.1016/j.bbmt.2015.07.022
Arbuckle JH, Medveczky PG (2011) The molecular biology of human herpesvirus-6 latency and telomere integration. Microbes Infect 13(8–9):731–741. https://doi.org/10.1016/j.micinf.2011.03.006
Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG (2010) The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc Natl Acad Sci USA 107(12):5563–5568. https://doi.org/10.1073/pnas.0913586107
Awadalla P, Boileau C, Payette Y, Idaghdour Y, Goulet JP, Knoppers B, Hamet P, Laberge C, Project CA (2013) Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics. Int J Epidemiol 42(5):1285–1299. https://doi.org/10.1093/ije/dys160
Bell AJ, Gallagher A, Mottram T, Lake A, Kane EV, Lightfoot T, Roman E, Jarrett RF (2014) Germ-line transmitted, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. PLoS One 9(11):e112642. https://doi.org/10.1371/journal.pone.0112642
Bell AJ, Brownlie CA, Gallacher A, Campbell A, Porteous DJ, Smith BH, Hocking L, Padmanabhan S, Jarrett RF (2015a) Prevalence of inherited chromosomally integrated HHV-6 varies by geographical location/nationality within the UK. In: 9th International conference on HHV-6 and HHV-7, Boston, November 9–11, abstract 8–16
Bell AJ, Johnson PDC, Jarrett RF (2015b) Integration and inheritance of HHV-6 genome concatemers. In: 9th International conference on HHV-6 and HHV-7, Boston, November 9–11
Caserta MT, Hall CB, Schnabel K, Lofthus G, Marino A, Shelley L, Yoo C, Carnahan J, Anderson L, Wang H (2010) Diagnostic assays for active infection with human herpesvirus 6 (HHV-6). J Clin Virol 48(1):55–57. https://doi.org/10.1016/j.jcv.2010.02.007
Chai W, Shay JW, Wright WE (2005) Human telomeres maintain their overhang length at senescence. Mol Cell Biol 25(6):2158–2168. https://doi.org/10.1128/MCB.25.6.2158-2168.2005
Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N (2012) Atherosclerosis and infection: is the jury still not in? Future Microbiol 7(10):1217–1230. https://doi.org/10.2217/fmb.12.87
Clark DA, Nacheva EP, Leong HN, Brazma D, Li YT, Tsao EH, Buyck HC, Atkinson CE, Lawson HM, Potter MN, Griffiths PD (2006) Transmission of integrated human herpesvirus 6 through stem cell transplantation: implications for laboratory diagnosis. J Infect Dis 193(7):912–916
Daibata M, Taguchi T, Sawada T, Taguchi H, Miyoshi I (1998a) Chromosomal transmission of human herpesvirus 6 DNA in acute lymphoblastic leukaemia. Lancet 352(9127):543–544. S0140-6736(05)79251-5 [pii] https://doi.org/10.1016/S0140-6736(05)79251-5
Daibata M, Taguchi T, Taguchi H, Miyoshi I (1998b) Integration of human herpesvirus 6 in a Burkitt’s lymphoma cell line. Br J Haematol 102(5):1307–1313
Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I (1999) Inheritance of chromosomally integrated human herpesvirus 6 DNA. Blood 94(5):1545–1549
Das BB, Munoz FM (2017) Screening for chromosomally integrated human herpesvirus 6 status in solid-organ donors and recipients. J Heart Lung Transplant 36(4):481. https://doi.org/10.1016/j.healun.2017.01.004
de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952. https://doi.org/10.1126/science.1170633
de Pagter PJ, Schuurman R, Meijer E, van Baarle D, Sanders EA, Boelens JJ (2008) Human herpesvirus type 6 reactivation after haematopoietic stem cell transplantation. J Clin Virol 43(4):361–366. https://doi.org/10.1016/j.jcv.2008.08.008
de Pagter PJ, Schuurman R, Keukens L, Schutten M, Cornelissen JJ, van Baarle D, Fries E, Sanders EA, Minnema MC, van der Holt BR, Meijer E, Boelens JJ (2013) Human herpes virus 6 reactivation: important predictor for poor outcome after myeloablative, but not non-myeloablative allo-SCT. Bone Marrow Transplant 48(11):1460–1464. https://doi.org/10.1038/bmt.2013.78
Deng H, Dewhurst S (1998) Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 72(1):320–329
Deng Z, Lezina L, Chen CJ, Shtivelband S, So W, Lieberman PM (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9(3):493–503
Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E, Spiro DJ (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:5. https://doi.org/10.1186/1471-2164-9-5
Doll R (2001) Cohort studies: history of the method. I. Prospective cohort studies. Sozial- und Praventivmedizin 46(2):75–86
Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE (1999) Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73(10):8040–8052
Dulery R, Salleron J, Dewilde A, Rossignol J, Boyle EM, Gay J, de Berranger E, Coiteux V, Jouet JP, Duhamel A, Yakoub-Agha I (2012) Early human herpesvirus type 6 reactivation after allogeneic stem cell transplantation: a large-scale clinical study. Biol Blood Marrow Transplant 18(7):1080–1089. https://doi.org/10.1016/j.bbmt.2011.12.579
Endo A, Watanabe K, Ohye T, Suzuki K, Matsubara T, Shimizu N, Kurahashi H, Yoshikawa T, Katano H, Inoue N, Imai K, Takagi M, Morio T, Mizutani S (2014) Molecular and Virological evidence of viral activation from chromosomally integrated human herpesvirus 6A in a patient with X-linked severe combined immunodeficiency. Clin Infect Dis 59(4):545–548. https://doi.org/10.1093/cid/ciu323
Engdahl E, Dunn N, Niehusmann P, Wideman S, Wipfler P, Becker AJ, Ekstrom TJ, Almgren M, Fogdell-Hahn A (2017) Human herpesvirus 6B induces hypomethylation on chromosome 17p13.3 correlating with increased gene expression and virus integration. J Virol. https://doi.org/10.1128/JVI.02105-16
Flamand L (2014) Pathogenesis from the reactivation of chromosomally integrated human herpesvirus type 6: facts rather than fiction. Clin Infect Dis 59(4):549–551. https://doi.org/10.1093/cid/ciu326
Gompels UA, Macaulay HA (1995) Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol 76(Pt 2):451–458
Gravel A, Tomoiu A, Cloutier N, Gosselin J, Flamand L (2003) Characterization of the immediate-early 2 protein of human herpesvirus 6, a promiscuous transcriptional activator. Virology 308(2):340–353
Gravel A, Hall CB, Flamand L (2013a) Sequence analysis of Transplacentally acquired human herpesvirus 6 DNA is consistent with transmission of a chromosomally integrated reactivated virus. J Infect Dis 207(10):1585–1589. https://doi.org/10.1093/infdis/jit060
Gravel A, Sinnett D, Flamand L (2013b) Frequency of chromosomally-integrated human herpesvirus 6 in children with acute lymphoblastic leukemia. PLoS One 8(12):e84322. https://doi.org/10.1371/journal.pone.0084322
Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L (2015) Inherited chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the development of angina pectoris. Proc Natl Acad Sci USA 112(26):8058–8063. https://doi.org/10.1073/pnas.1502741112
Gravel A, Dubuc I, Brooks-Wilson A, Aronson KJ, Simard J, Velasquez-Garcia HA, Spinelli JJ, Flamand L (2017a) Inherited chromosomally integrated human herpesvirus 6 and breast cancer. Cancer Epidemiol Biomark Prev 26(3):425–427. https://doi.org/10.1158/1055-9965.EPI-16-0735
Gravel A, Dubuc I, Wallaschek N, Gilbert-Girard S, Collin V, Hall-Sedlak R, Jerome KR, Mori Y, Carbonneau J, Boivin G, Kaufer BB, Flamand L (2017b) Cell culture systems to study human Herpesvirus-6 chromosomal integration. J Virol 91:pii: e00437-17
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514
Gulve N, Frank C, Klepsch M, Prusty BK (2017) Chromosomal integration of HHV-6A during non-productive viral infection. Sci Rep 7(1):512. https://doi.org/10.1038/s41598-017-00658-y
Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. https://doi.org/10.1021/ac202028g
Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10(10):1003–1005. https://doi.org/10.1038/nmeth.2633
Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A, Wig G, Medina-Calzada Z, Neumann R, Jeffreys AJ, Winney B, Wilson JF, Clark DA, Dyer MJ, Royle NJ (2014) Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Res 42(1):315–327. https://doi.org/10.1093/nar/gkt840
Hubacek P, Muzikova K, Hrdlickova A, Cinek O, Hyncicova K, Hrstkova H, Sedlacek P, Stary J (2009) Prevalence of HHV-6 integrated chromosomally among children treated for acute lymphoblastic or myeloid leukemia in the Czech Republic. J Med Virol 81(2):258–263. https://doi.org/10.1002/jmv.21371
Imbert-Marcille BM, Tang XW, Lepelletier D, Besse B, Moreau P, Billaudel S, Milpied N (2000) Human herpesvirus 6 infection after autologous or allogeneic stem cell transplantation: a single-center prospective longitudinal study of 92 patients. Clin Infect Dis 31(4):881–886. https://doi.org/10.1086/318142
Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K (1999) Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B. J Virol 73(10):8053–8063
Jarrett R (2015) iciHHV-6 prevalence and disease associations in the generation Scotland study. In: 9th International conference on HHV-6 and HHV-7, abstract 8-3, Boston, November 9–11
Jarrett RF, Gledhill S, Qureshi F, Crae SH, Madhok R, Brown I, Evans I, Krajewski A, O’Brien CJ, Cartwright RA et al (1988) Identification of human herpesvirus 6-specific DNA sequences in two patients with non-Hodgkin’s lymphoma. Leukemia 2(8):496–502
Kamble RT, Clark DA, Leong HN, Heslop HE, Brenner MK, Carrum G (2007) Transmission of integrated human herpesvirus-6 in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 40(6):563–566. 1705780 [pii] https://doi.org/10.1038/sj.bmt.1705780
Kaufer BB, Flamand L (2014) Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 9C:111–118. https://doi.org/10.1016/j.coviro.2014.09.010
Kishi M, Harada H, Takahashi M, Tanaka A, Hayashi M, Nonoyama M, Josephs SF, Buchbinder A, Schachter F, Ablashi DV et al (1988) A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek’s disease virus. J Virol 62(12):4824–4827
Kondo K, Kondo T, Okuno T, Takahashi M, Yamanishi K (1991) Latent human herpesvirus 6 infection of human monocytes/macrophages. J Gen Virol 72(Pt 6):1401–1408
Kondo K, Shimada K, Sashihara J, Tanaka-Taya K, Yamanishi K (2002) Identification of human herpesvirus 6 latency-associated transcripts. J Virol 76(8):4145–4151
Kuhl U, Lassner D, Wallaschek N, Gross UM, Krueger GR, Seeberg B, Kaufer BB, Escher F, Poller W, Schultheiss HP (2015) Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail 17(1):9–19. https://doi.org/10.1002/ejhf.194
Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368(21):2004–2013. https://doi.org/10.1056/NEJMra1216063
Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38(6):1092–1104. https://doi.org/10.1016/j.immuni.2013.06.009
Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19(8):414–422. https://doi.org/10.1016/j.tcb.2009.05.002
Ljungman P, de la Camara R, Cordonnier C, Einsele H, Engelhard D, Reusser P, Styczynski J, Ward K (2008) Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplant 42(4):227–240. https://doi.org/10.1038/bmt.2008.162
Luppi M, Marasca R, Barozzi P, Ferrari S, Ceccherini-Nelli L, Batoni G, Merelli E, Torelli G (1993) Three cases of human herpesvirus-6 latent infection: integration of viral genome in peripheral blood mononuclear cell DNA. J Med Virol 40(1):44–52
Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88(5):657–666
Malkova A, Ira G (2013) Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 23(3):271–279. https://doi.org/10.1016/j.gde.2013.05.007
Martin ME, Thomson BJ, Honess RW, Craxton MA, Gompels UA, Liu MY, Littler E, Arrand JR, Teo I, Jones MD (1991) The genome of human herpesvirus 6: maps of unit-length and concatemeric genomes for nine restriction endonucleases. J Gen Virol 72(Pt 1):157–168
McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16(12):3705–3714. https://doi.org/10.1093/emboj/16.12.3705
Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995. https://doi.org/10.1016/j.dnarep.2009.04.017
Morissette G, Flamand L (2010) Herpesviruses and chromosomal integration. J Virol 84(23):12100–12109. https://doi.org/10.1128/JVI.01169-10
Morris C, Luppi M, McDonald M, Barozzi P, Torelli G (1999) Fine mapping of an apparently targeted latent human herpesvirus type 6 integration site in chromosome band 17p13.3. J Med Virol 58(1):69–75. doi:10.1002/(SICI)1096-9071(199905)58:1<69::AID-JMV11>3.0.CO;2-3 [pii]
Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J, Leong HN, Clark DA (2008) Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. J Med Virol 80(11):1952–1958. https://doi.org/10.1002/jmv.21299
Nikitina T, Woodcock CL (2004) Closed chromatin loops at the ends of chromosomes. J Cell Biol 166(2):161–165. https://doi.org/10.1083/jcb.200403118
Ohye T, Inagaki H, Ihira M, Higashimoto Y, Kato K, Oikawa J, Yagasaki H, Niizuma T, Takahashi Y, Kojima S, Yoshikawa T, Kurahashi H (2014) Dual roles for the telomeric repeats in chromosomally integrated human herpesvirus-6. Sci Rep 4:4559. https://doi.org/10.1038/srep04559
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12(10):847–854. https://doi.org/10.1038/nsmb982
Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V, Flamand L, Gautheret-Dejean A, Hall CB, Kamble RT, Kuehl U, Lassner D, Lautenschlager I, Loomis KS, Luppi M, Lusso P, Medveczky PG, Montoya JG, Mori Y, Ogata M, Pritchett JC, Rogez S, Seto E, Ward KN, Yoshikawa T, Razonable RR (2012) Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol 22(3):144–155. https://doi.org/10.1002/rmv.715
Potenza L, Barozzi P, Rossi G, Riva G, Vallerini D, Zanetti E, Quadrelli C, Morselli M, Forghieri F, Maccaferri M, Paolini A, Marasca R, Narni F, Luppi M (2011) May the indirect effects of CIHHV-6 in transplant patients be exerted through the reactivation of the viral replicative machinery? Transplantation 92(9):e49–e51. author reply e51-42. https://doi.org/10.1097/TP.0b013e3182339d1a
Prusty BK, Krohne G, Rudel T (2013) Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation. PLoS Genet 9(12):e1004033. https://doi.org/10.1371/journal.pgen.1004033
Quintela A, Escuret V, Roux S, Bonnafous P, Gilis L, Barraco F, Labussiere-Wallet H, Duscastelle-Lepretre S, Nicolini FE, Thomas X, Chidiac C, Ferry T, Frobert E, Morisset S, Poitevin-Later F, Monneret G, Michallet M, Ader F, Lyon HSG (2016) HHV-6 infection after allogeneic hematopoietic stem cell transplantation: from chromosomal integration to viral co-infections and T-cell reconstitution patterns. J Infect 72:214–222. https://doi.org/10.1016/j.jinf.2015.09.039
Raices M, Verdun RE, Compton SA, Haggblom CI, Griffith JD, Dillin A, Karlseder J (2008) C. Elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 132(5):745–757. https://doi.org/10.1016/j.cell.2007.12.039
Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, Halligan G, Biberfeld P, Wong-Staal F, Kramarsky B et al (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234(4776):596–601
Schmidt-Lucke C, Spillmann F, Bock T, Kuhl U, Van Linthout S, Schultheiss HP, Tschope C (2010) Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. J Infect Dis 201(6):936–945. https://doi.org/10.1086/650700
Sedlak RH, Cook L, Huang ML, Magaret A, Zerr DM, Boeckh M, Jerome KR (2014) Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin Chem 60(5):765–772. https://doi.org/10.1373/clinchem.2013.217240
Sedlak RH, Hill JA, Nguyen T, Cho M, Levin G, Cook L, Huang ML, Flamand L, Zerr DM, Boeckh M, Jerome KR (2016) Detection of Human Herpesvirus 6B (HHV-6B) reactivation in hematopoietic cell transplant recipients with inherited chromosomally integrated HHV-6A by droplet digital PCR. J Clin Microbiol 54(5):1223–1227. https://doi.org/10.1128/JCM.03275-15
Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, Deary IJ, Macintyre DJ, Campbell H, McGilchrist M, Hocking LJ, Wisely L, Ford I, Lindsay RS, Morton R, Palmer CN, Dominiczak AF, Porteous DJ, Morris AD (2013) Cohort profile: generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int J Epidemiol 42(3):689–700. https://doi.org/10.1093/ije/dys084
Strenger V, Caselli E, Lautenschlager I, Schwinger W, Aberle SW, Loginov R, Gentili V, Nacheva E, DiLuca D, Urban C (2014) Detection of HHV-6-specific mRNA and antigens in PBMCs of individuals with chromosomally integrated HHV-6 (ciHHV-6). Clin Microbiol Infect 20(10):1027–1032. https://doi.org/10.1111/1469-0691.12639
Thomson BJ, Dewhurst S, Gray D (1994) Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol 68(5):3007–3014
Torelli G, Marasca R, Luppi M, Selleri L, Ferrari S, Narni F, Mariano MT, Federico M, Ceccherini-Nelli L, Bendinelli M et al (1991) Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin's lymphomas by polymerase chain reaction. Blood 77(10):2251–2258
Torelli G, Barozzi P, Marasca R, Cocconcelli P, Merelli E, Ceccherini-Nelli L, Ferrari S, Luppi M (1995) Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol 46(3):178–188
Trempe F, Gravel A, Dubuc I, Wallaschek N, Collin V, Gilbert-Girard S, Morissette G, Kaufer BB, Flamand L (2015) Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 43(12):6084–6098. https://doi.org/10.1093/nar/gkv503
Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA (2016) Complete genome sequence of germline chromosomally integrated human herpesvirus 6A and analyses integration sites define a new human endogenous virus with potential to reactivate as an emerging infection. Viruses 8(1):19. https://doi.org/10.3390/v8010019
Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127(4):709–720. https://doi.org/10.1016/j.cell.2006.09.034
Wallaschek N, Gravel A, Flamand L, Kaufer BB (2016a) The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J Gen Virol. https://doi.org/10.1099/jgv.0.000502
Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, Kaufer BB (2016b) The Telomeric repeats of Human Herpesvirus 6A (HHV-6A) are required for efficient virus integration. PLoS Pathog 12(5):e1005666. https://doi.org/10.1371/journal.ppat.1005666
Ward KN, Leong HN, Nacheva EP, Howard J, Atkinson CE, Davies NW, Griffiths PD, Clark DA (2006) Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J Clin Microbiol 44(4):1571–1574. 44/4/1571 [pii] https://doi.org/10.1128/JCM.44.4.1571-1574.2006
Willett WC, Colditz GA (1998) Approaches for conducting large cohort studies. Epidemiol Rev 20(1):91–99
Yamada Y, Osumi T, Imadome KI, Takahashi E, Ohye T, Yoshikawa T, Tomizawa D, Kato M, Matsumoto K (2017) Transmission of chromosomally integrated human herpesvirus 6 via cord blood transplantation. Transpl Infect Dis 19(1). https://doi.org/10.1111/tid.12636
Zerr DM (2006) Human herpesvirus 6 and central nervous system disease in hematopoietic cell transplantation. J Clin Virol 37(Suppl 1):S52–S56
Zerr DM, Fann JR, Breiger D, Boeckh M, Adler AL, Xie H, Delaney C, Huang ML, Corey L, Leisenring WM (2011) HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. Blood 117(19):5243–5249. https://doi.org/10.1182/blood-2010-10-316083
Zerr DM, Boeckh M, Delaney C, Martin PJ, Xie H, Adler AL, Huang ML, Corey L, Leisenring WM (2012) HHV-6 reactivation and associated sequelae after hematopoietic cell transplantation. Biol Blood Marrow Transplant 18(11):1700–1708. https://doi.org/10.1016/j.bbmt.2012.05.012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Flamand, L. (2018). Chromosomal Integration by Human Herpesviruses 6A and 6B. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_10
Download citation
DOI: https://doi.org/10.1007/978-981-10-7230-7_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7229-1
Online ISBN: 978-981-10-7230-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)