Skip to main content

Zero-Crossing Feature Extraction Based on Threshold Optimization for Rolling Element Bearing

  • Chapter
  • First Online:
Innovative Techniques and Applications of Modelling, Identification and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 467))

Abstract

The rolling element bearings are widely used in mechanical transmission systems, whose failures are the most frequently encountered factors for machine breakdown. To effectively prevent the unexpected breakdown, it is important to extract the more efficient features to identify the bearings faults. The spectrum analysis for the bearing ball and inner fault recognition may not be suitable in this case. This paper proposed a threshold optimized zero-crossing feature extraction method, which calculates the Euclidean distance feature vector of the rolling bearing states. The optimizing observation window length and intervals number can be obtained, and the optimized feature vector is selected to establish the identification model. Experiment validates the effectiveness of the proposed method.

The work was supported by National Natural Science Foundation of China (No. 51265018, No. 51465022) and the Yunnan Province Personal Training Project (Grant No. KKSY201401096).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nandi, H.A. Toliyat, X. Li, Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Convers. 20(4), 719–729 (2005)

    Article  Google Scholar 

  2. A.K.S. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  3. R.B. Randall, J. Antoni, Rolling element bearing diagnostics—a tutorial. Mech. Syst. Signal Process. 25(2), 485–520 (2011)

    Article  Google Scholar 

  4. H.R. Martin, F. Honarvar, Application of statistical moments to bearing failure detection. Appl. Acoust. 44(1), 67–77 (1995)

    Article  Google Scholar 

  5. R.B.W. Heng, M.J.M. Nor, Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Appl. Acoust. 53(1–3), 211–226 (1998)

    Article  Google Scholar 

  6. T.W. Rauber, F.D.A. Boldt, F.M. Varejão, Heterogeneous feature models and feature selection applied to bearing fault diagnosis. IEEE Trans. Industr. Electron. 62(1), 637–646 (2015)

    Article  Google Scholar 

  7. J. Chebil, M. Hrairi, N. Abushikhah, Signal analysis of vibration measurements for condition monitoring of bearings. Aust. J. Basic Appl. Sci. 5(1), 70 (2011)

    Google Scholar 

  8. M.D. Prieto, G. Cirrincione, A.G. Espinosa et al., Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks. IEEE Trans. Industr. Electron. 60(8), 3398–3407 (2013)

    Article  Google Scholar 

  9. A. Garcia-Perez, R.D.J. Romero-Troncoso, E. Cabal-Yepez et al., The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors. IEEE Trans. Industr. Electron. 58(5), 2002–2010 (2011)

    Article  Google Scholar 

  10. E.H.E. Bouchikhi, V. Choqueuse, M. Benbouzid, et al., Induction machine fault detection enhancement using a stator current high resolution spectrum, in IECON 2012—Conference on IEEE Industrial Electronics Society (IEEE, 2012), pp. 3913–3918

    Google Scholar 

  11. Z.K. Peng, F.L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech. Syst. Signal Process. 18(2), 199–221 (2004)

    Article  Google Scholar 

  12. S. Abbasion, A. Rafsanjani, A. Farshidianfar et al., Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech. Syst. Signal Process. 21(7), 2933–2945 (2007)

    Article  Google Scholar 

  13. W. Su, F. Wang, H. Zhu et al., Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement. Mech. Syst. Signal Process. 24(5), 1458–1472 (2010)

    Article  Google Scholar 

  14. M. Blodt, M. Chabert, J. Regnier et al., Mechanical load fault detection in induction motors by stator current time-frequency analysis. IEEE Trans. Ind. Appl. 42(6), 1454–1463 (2006)

    Article  Google Scholar 

  15. X. Lou, K.A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18(5), 1077–1095 (2004)

    Article  Google Scholar 

  16. J. Seshadrinath, B. Singh, B.K. Panigrahi, Investigation of vibration signatures for multiple fault diagnosis in variable frequency drives using complex wavelets. IEEE Trans. Power Electron. 29(2), 936–945 (2013)

    Article  Google Scholar 

  17. X. Jin, M. Zhao, T.W.S. Chow et al., Motor bearing fault diagnosis using trace ratio linear discriminant analysis. IEEE Trans. Ind. Electron. 61(5), 2441–2451 (2013)

    Article  Google Scholar 

  18. M. Zhao, X. Jin, Z. Zhang et al., Fault diagnosis of rolling element bearings via discriminative subspace learning: visualization and classification. Expert Syst. Appl. 41(7), 3391–3401 (2014)

    Article  Google Scholar 

  19. R. Niederjohn, A mathematical formulation and comparison of zero-crossing analysis techniques which have been applied to automatic speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23(4), 373–380 (2003)

    Article  Google Scholar 

  20. P.E. William, Efficient sensor network vehicle classification using peak harmonics of acoustic emissions, in Proceedings of SPIE—The International Society for Optical Engineering, p. 6963 (2008)

    Google Scholar 

  21. M. Nakagawa, H. Tsai, B. He, 3D-EEG rhythm mapping during flash stimulation using zero-crossings analysis, in Engineering in Medicine and Biology Society, 1997. Proceedings of the, International Conference of the IEEE, vol. 4 (IEEE, 1997), pp. 1536–1539

    Google Scholar 

  22. A.S. Zandi, R. Tafreshi, M. Javidan et al., Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans. Bio-med. Eng. 60(5), 1401 (2013)

    Article  Google Scholar 

  23. P.E. William, M.W. Hoffman, Identification of bearing faults using time domain zero-crossings. Mech. Syst. Signal Process. 25(8), 3078–3088 (2011)

    Article  Google Scholar 

  24. T. Liu, J. Chen, G. Dong, Zero crossing and coupled hidden Markov model for a rolling bearing performance degradation assessment. J. Vib. Control 20, 2487–2500 (2014)

    Article  Google Scholar 

  25. A. Ukil, S. Chen, A. Andenna, Detection of stator short circuit faults in three-phase induction motors using motor current zero crossing instants. Electr. Power Syst. Res. 81(4), 1036–1044 (2011)

    Article  Google Scholar 

  26. Z.Q. Bian, X.G. Zhang, Pattern Recognition, 2nd edn. (Tsinghua University, Press, Beijing, 1999), pp. 176–177

    Google Scholar 

  27. Q. Miao, D. Wang, H.Z. Huang, Identification of characteristic components in frequency domain from signal singularities. Rev. Sci. Instrum. 81(3), 1312 (2010)

    Article  Google Scholar 

  28. Q. Miao, L. Cong, M. Pecht, Identification of multiple characteristic components with high accuracy and resolution using the zoom interpolated discrete Fourier transform. Meas. Sci. Technol. 22(5), 055701 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Chen or Xing Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q., Wu, X., Liu, T., Li, H. (2018). Zero-Crossing Feature Extraction Based on Threshold Optimization for Rolling Element Bearing. In: Zhu, Q., Na, J., Wu, X. (eds) Innovative Techniques and Applications of Modelling, Identification and Control. Lecture Notes in Electrical Engineering, vol 467. Springer, Singapore. https://doi.org/10.1007/978-981-10-7212-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7212-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7211-6

  • Online ISBN: 978-981-10-7212-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics