Skip to main content

Manufacturing Techniques of Perovskite Solar Cells

  • Chapter
  • First Online:
Applications of Solar Energy

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Perovskite solar cells (PSCs) are in focus of the solar cell development research for the last few years due to their high efficiency, cost-effective fabrication, and band gap tunability. Perovskite solar cell efficiency sharply increased from its initial reported efficiency of 3.8% in 2009 to 22.1% in 2016. This makes PSCs as the technology with the fastest growth rate in terms of the efficiency. Different device architectures have also been developed in an attempt to improve the PSC efficiency. At laboratory scale, a spin-coating process is employed to deposit different layers of PSCs. Though spin-coating process helps to achieve high efficiency, for large-scale production viability, researchers are developing different deposition techniques. A broad range of manufacturing techniques for perovskite-based solar cells have been tested and reported comprising drop casting, spray coating, ultrasonic spray coating, slot die coating, electrodeposition, CVD, thermal vapor deposition, vacuum deposition, screen printing, ink-jet printing, etc., with different device architectures. This chapter summarizes different PSC structures along with the corresponding manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asghar MI (2012) Stability issues of dye solar cells, vol 53

    Google Scholar 

  2. Nema P, Nema RK, Rangnekar S (2009) A current and future state of art development of hybrid energy system using wind and PV-solar: a review. Renew Sustain Energy Rev 13(8):2096–2103

    Article  Google Scholar 

  3. Lund H, Kempton W (2008) Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9):3578–3587

    Article  Google Scholar 

  4. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524

    Article  Google Scholar 

  5. Østergaard PA (2012) Comparing electricity, heat and biogas storages’ impacts on renewable energy integration. Energy 37(1):255–262

    Google Scholar 

  6. Lewis NS (2007) Solar energy use. Sol Energy 315:798–801

    Google Scholar 

  7. Prasanthkumar S, Giribabu L (2016) Recent advances in perovskite-based solar cells. Curr Sci 111(7):1173–1181

    Article  Google Scholar 

  8. Rand BP, Genoe J, Heremans P, Poortmans J (2015) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt Res Appl 15:659–676

    Article  Google Scholar 

  9. T.I.R.E.A. (Irena) (2013) Solar photovoltaics technology brief. The International Renewable Energy Agency, pp 1–28

    Google Scholar 

  10. Hibberd CJ, Chassaing E, Liu W, Mitzi DB, Lincot D, Tiwari AN (2010) Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Prog Photovolt Res Appl 18(6):434–452

    Article  Google Scholar 

  11. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  12. Pandey C (2015) Application of printing techniques in hybrid photovoltaic technologies

    Google Scholar 

  13. Cong J, Yang X, Kloo L, Sun L (2012) Iodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy Environ Sci 5(11):9180

    Article  Google Scholar 

  14. Ari. © 1991 Nature Publishing Group

    Google Scholar 

  15. Kakiage K, Aoyama Y, Yano T, Oya K, Kyomen T, Hanaya M (2015) Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chem Commun 51(29):6315–6317

    Article  Google Scholar 

  16. Ubani CA, Ibrahim MA, Teridi MAM (2017) Moving into the domain of perovskite sensitized solar cell. Renew Sustain Energy Rev 72:907–915

    Google Scholar 

  17. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 48), version 48, pp 905–913

    Google Scholar 

  18. Bai Y et al (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806

    Article  Google Scholar 

  19. Yang S, Fu W, Zhang Z, Chen H, Li C-Z (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater Chem A 5:11462–11482

    Article  Google Scholar 

  20. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  Google Scholar 

  21. McGehee M (2014) Emerging high-efficiency low-cost solar cell technologies. NREL

    Google Scholar 

  22. Sharma S, Jain KK, Sharma A (2015) Solar cells. in research and applications—a review. Mater Sci Appl 6(December):1145–1155

    Google Scholar 

  23. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17):8970–8980

    Article  Google Scholar 

  24. Xing G, Mathews N, Lim SS, Lam YM, Mhaisalkar S, Sum TC (2013) Reports 10, vol 6960, no 2012, pp 498–500

    Google Scholar 

  25. Park NG (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett 4(15):2423–2429

    Article  Google Scholar 

  26. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842

    Article  Google Scholar 

  27. Koh TM et al (2014) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118(30):16458–16462

    Article  Google Scholar 

  28. Karlin KD (2012) Progress in inorganic chemistry, vol 57

    Google Scholar 

  29. Asghar MI, Zhang J, Wang H, Lund PD (2017) Device stability of perovskite solar cells—a review. Renew Sustain Energy Rev 77(February):131–146

    Article  Google Scholar 

  30. Song Z, Watthage SC, Phillips AB, Heben MJ (2016) Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J Photon Energy 6(2):22001

    Article  Google Scholar 

  31. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398

    Article  Google Scholar 

  32. Burschka J et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319

    Article  Google Scholar 

  33. Xiao Z et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7(8):2619

    Article  Google Scholar 

  34. Wang Y, Luo J, Nie R, Deng X (2016) Planar perovskite solar cells using CH 3 NH 3 PbI 3 films: a simple process suitable for large-scale production. Energy Technol 4(4):473–478

    Article  Google Scholar 

  35. Sutherland BR et al (2015) Perovskite thin films via atomic layer deposition. Adv Mater 27(1):53–58

    Article  Google Scholar 

  36. Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(August):165–171

    Article  Google Scholar 

  37. Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci 7(12):3952–3981

    Article  Google Scholar 

  38. Han Y et al (2015) Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3(15):8139–8147

    Article  Google Scholar 

  39. Li X et al (2015) Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol 3(6):551–555

    Article  Google Scholar 

  40. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93(4):465–475

    Article  Google Scholar 

  41. Galagan Y, Coenen EWC, Verhees WJH, Andriessen R (2016) Towards the scaling up of perovskite solar cells and modules. J Mater Chem A 4(15):5700–5705

    Article  Google Scholar 

  42. Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9)

    Google Scholar 

  43. Im JH, Kim HS, Park NG (2014) Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI 3. APL Mater 2(8)

    Google Scholar 

  44. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, II Seok S (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903

    Article  Google Scholar 

  45. Oku T, Matsumoto T, Suzuki A, Suzuki K (2015) Fabrication and characterization of a perovskite-type solar cell with a substrate size of 70 mm. Coatings 5(4):646–655

    Article  Google Scholar 

  46. Heo JH, Song DH, Im SH (2014) Planar CH 3 NH 3 PbBr 3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process, pp 8179–8183

    Google Scholar 

  47. Yang M, Zhou Y, Zeng Y, Jiang CS, Padture NP, Zhu K (2015) Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv Mater 27(41):6363–6370

    Article  Google Scholar 

  48. Chen W et al (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science (80) 350(6263):944–948

    Google Scholar 

  49. Chang C, Huang Y, Tsao C, Su W (2016) Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering

    Google Scholar 

  50. Di Giacomo F, Fakharuddin A, Jose R, Brown TM (2016) Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci 9(10):3007–3035

    Article  Google Scholar 

  51. Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J (2015) Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci 8(5):1544–1550

    Article  Google Scholar 

  52. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412

    Article  Google Scholar 

  53. Galagan Y et al (2015) Roll-to-roll slot-die coated organic photovoltaic (OPV) modules with high geometrical fill factors. Energy Technol 3(8):834–842

    Article  Google Scholar 

  54. Barrows AT, Pearson AJ, Kwak CK, Dunbar ADF, Buckley AR, Lidzey DG (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7(9):2944

    Article  Google Scholar 

  55. Tait JG et al (2016) Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J Mater Chem A 4(10):3792–3797

    Article  Google Scholar 

  56. Li S-G et al (2015) Inkjet printing of CH3 NH3 PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J Mater Chem A 3(17):9092–9097

    Article  Google Scholar 

  57. Hwang K et al (2015) Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater 27(7):1241–1247

    Article  Google Scholar 

  58. Schmidt TM, Larsen-Olsen TT, Carlé JE, Angmo D, Krebs FC (2015) Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater 5(15):1–9

    Article  Google Scholar 

  59. Habibi M, Rahimzadeh A, Bennouna I, Eslamian M (2017) Defect-free large-area (25 cm2) light absorbing perovskite thin films made by spray coating. Coatings 7(3):42

    Article  Google Scholar 

  60. Mohamad DK, Griffin J, Bracher C, Barrows AT, Lidzey DG (2016) Spray-cast multilayer organometal perovskite solar cells fabricated in air. Adv Energy Mater 6(22):1–7

    Article  Google Scholar 

  61. Ramesh M, Boopathi KM, Huang TY, Huang YC, Tsao CS, Chu CW (2015) Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells. ACS Appl Mater Interfaces 7(4):2359–2366

    Article  Google Scholar 

  62. Chandrasekhar PS, Kumar N, Swami SK, Dutta V, Komarala VK (2016) Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance. Nanoscale 8(12):6792–6800

    Article  Google Scholar 

  63. Habibi M (2017) Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells, vol 7, no 2

    Google Scholar 

  64. Shen P-S, Chiang Y-H, Li M-H, Guo T-F, Chen P (2016) Research update: hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Mater. 4(9):91509

    Article  Google Scholar 

  65. Das S et al (2015) High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon 2(6):680–686

    Article  Google Scholar 

  66. Zheng J et al (2017) Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells 168(February):165–171

    Article  Google Scholar 

  67. Zhang M, Yu H, Yun J-H, Lyu M, Wang Q, Wang L (2015) Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem Commun 51(49):10038–10041

    Article  Google Scholar 

  68. Zheng J et al (2017) Solar energy materials and solar cells spin-coating free fabrication for highly efficient perovskite solar cells, vol 168, pp 165–171

    Google Scholar 

  69. Razza S et al (2015) Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J Power Sources 277(2015):286–291

    Article  Google Scholar 

  70. Yang Z, Chueh CC, Zuo F, Kim JH, Liang PW, Jen AKY (2015) High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater 5(13):1–6

    Article  Google Scholar 

  71. Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY (2015) Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv Energy Mater 5(4):2–7

    Article  Google Scholar 

  72. Qin T et al (2017) Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31:210–217

    Google Scholar 

  73. Cai L, Liang L, Wu J, Ding B, Gao L, Fan B (2017) Large area perovskite solar cell module. J Semicond 38(1):14006

    Article  Google Scholar 

  74. Lee JW, Na SI, Kim SS (2017) Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J Power Sources 339:33–40

    Article  Google Scholar 

  75. Kim S, Na S, Kang S, Kim D (2010) Solar energy materials & solar cells annealing-free fabrication of P3HT: PCBM solar cells via simple brush painting. Sol Energy Mater Sol Cells 94(2):171–175

    Article  Google Scholar 

  76. Kim SS, Na SI, Jo J, Tae G, Kim DY (2007) Efficient polymer solar cells fabricated by simple brush painting. Adv Mater 19(24):4410–4415

    Article  Google Scholar 

  77. Chen H, Wei Z, Zheng X, Yang S (2015) A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15:216–226

    Article  Google Scholar 

  78. Huang J et al (2015) Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci Rep 5(1):15889

    Article  Google Scholar 

  79. Su T-S, Hsieh T-Y, Hong C-Y, Wei T-C (2015) Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Sci Rep 5(1):16098

    Article  Google Scholar 

  80. Koza JA, Hill JC, Demster AC, Switzer JA (2016) Epitaxial electrodeposition of methylammonium lead iodide perovskites. Chem Mater 28(1):399–405

    Article  Google Scholar 

  81. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22(6):673–685

    Article  Google Scholar 

  82. Jiang Z, Bag M, Renna L, Jeong SP, Rotello V, Venkataraman D (2016) Aqueous-processed perovskite solar cells based on reactive inkjet printing. Hal, p hal-01386295

    Google Scholar 

  83. Tavakoli MM et al (2015) Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci Rep 5(1):14083

    Article  Google Scholar 

  84. Chen Q et al (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625

    Article  Google Scholar 

  85. Chen CW, Kang HW, Hsiao SY, PF Yang, Chiang KM, Lin HW (2014) Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv Mater 6647–6652

    Google Scholar 

  86. Li M-H, Shen P-S, Chen J-S, Chiang Y-H, Chen P, Guo T-F (2016) Low-pressure hybrid chemical vapor deposition for efficient perovskite solar cells and module. 2016 23rd international workshop on act flatpanel displays devices, pp 256–257

    Google Scholar 

  87. Shen PS, Chen JS, Chiang YH, Li MH, Guo TF, Chen P (2016) Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module. Adv Mater Interfaces 3(8):1–8

    Article  Google Scholar 

  88. Fan P et al (2016) High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 6(1):29910

    Article  Google Scholar 

  89. Ono LK, Leyden MR, Wang S, Qi Y (2016) Organometal halide perovskite thin films and solar cells by vapor deposition. J Mater Chem A 4(18):6693–6713

    Article  Google Scholar 

  90. Luo P et al (2015) Chlorine-conducted defect repairment and seed crystal-mediated vapor growth process for controllable preparation of efficient and stable perovskite solar cells. J Mater Chem A 3(45):22949–22959

    Article  Google Scholar 

  91. Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves. J Mater Chem A 3(23):12443–12451

    Article  Google Scholar 

  92. Luo P, Liu Z, Xia W, Yuan C, Cheng J, Lu Y (2015) Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl Mater Interfaces 7(4):2708–2714

    Article  Google Scholar 

  93. Zhou Z et al (2016) Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO 2 as an electron collection bilayer. RSC Adv 6(82):78585–78594

    Article  Google Scholar 

  94. Liu C, Fan J, Zhang X, Shen Y, Yang L, Mai Y (2015) Hysteretic behavior upon light soaking in perovskite solar cells prepared via modified vapor-assisted solution process. ACS Appl Mater Interfaces 7(17):9066–9071

    Article  Google Scholar 

  95. Sedighi R, Tajabadi F, Shahbazi S, Gholipour S, Taghavinia N (2016) Mixed-halide CH3NH3PbI3—xXx (X = Cl, Br, I) perovskites: vapor-assisted solution deposition and application as solar cell absorbers. ChemPhysChem 2382–2388

    Google Scholar 

  96. Peng Y, Jing G, Cui T (2015) A hybrid physical–chemical deposition process at ultra-low temperatures for high-performance perovskite solar cells. J. Mater Chem A 3(23):12436–12442

    Article  Google Scholar 

  97. Sheng R et al (2015) Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J Phys Chem C 119(7):3545–3549

    Article  Google Scholar 

  98. Du T, Wang N, Chen H, Lin H, He H (2015) Comparative study of vapor- and solution-crystallized perovskite for planar heterojunction solar cells. ACS Appl Mater Interfaces 7(5):3382–3388

    Article  Google Scholar 

  99. Yang Z et al (2017) Research progress on large-area perovskite thinfilms and solar modules. J Materiomics 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satvasheel Powar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kajal, P., Ghosh, K., Powar, S. (2018). Manufacturing Techniques of Perovskite Solar Cells. In: Tyagi, H., Agarwal, A., Chakraborty, P., Powar, S. (eds) Applications of Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7206-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7206-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7205-5

  • Online ISBN: 978-981-10-7206-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics