Advertisement

A Secure Cloud Data Storage Combining DNA Structure and Multi-aspect Time-Integrated Cut-off Potential

  • R. Pragaladan
  • S. Sathappan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 645)

Abstract

Confidentiality and authentication enable cloud storage server to prove that it is storing owner’s data honestly. However, most of the constructions suffer from special update techniques and the issue of a complex data modification, which might hinder the deployment of confidentiality and authentication in practice. In this regard, we propose a DNA-based Multi-aspect Cut-off Potential (DNA-MACP) framework, by making use of DNA-based Watson–Crick–Hoogsteen and Time-Integrated Cut-off Potential to reduce the time complexity for establishing data confidentiality and space complexity by managing one-time password. Based on the intractability of the tertiary triples, a secure confidential data transaction is designed for cloud storage, where the user authentication scheme is utilised to deal with the improper data modification problem. The DNA-MACP framework enhances the authentication level of security by using both confidentiality and authentication techniques from the unauthorised user modification. The DNA-MACP framework with extensive security analysis and implementation results in reducing both time and space complexities in the business data transactions in a cloud environment.

Keywords

Confidentiality Authentication DNA Multi-aspect Cut-off potential Watson–Crick–Hoogsteen 

References

  1. 1.
    Pragaladan, R., Sathappan, S.: High confidential data storage using DNA structure for cloud environment. In: International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), IEEE Xplore. pp. 382–387 (2016).  https://doi.org/10.1109/CSITSS.2016.7779391
  2. 2.
    Trombetta, A., Jiang, W., Bertino, E., Bossi, L.: Privacy-preserving updates to anonymous and confidential databases. IEEE Trans. Dependable Secure Comput. 8(4), 578–587 (2011)CrossRefGoogle Scholar
  3. 3.
    Dinga, J.-H., Chienb, R., Hungb, S.-H., Lina, Y.-L., Kuoa, C.-Y., Hsuc, C.-H., Chunga, Y.-C.: A framework of cloud-based virtual phones for secure-intelligent information management. Int. J. Inf. Manag. (Elsevier) 34(3), 329–335 (2014)CrossRefGoogle Scholar
  4. 4.
    Pragaladan R, Sathappan, S. 2017 A secure confidential data storage using fast chaos-based DNA cryptography (FSB-DC) for cloud environment. (Unpublished Article)Google Scholar
  5. 5.
    Ranalkar, R.H., Phulpagar, B.D.: DNA-based cryptography in multi-cloud: security strategy and analysis. Int. J. Emerging Trends Technol. Comput. Sci. (IJETTCS) 3(2), 189–192 (2014)Google Scholar
  6. 6.
    Siddaramappa, V.: Data security in dna sequence using random function and binary arithmetic operations. Int. J. Sci. Res. Publ. 2(7), 1–3 (2012)Google Scholar
  7. 7.
    Pragaladan, R., Sathappan, S.: Multi aspect sparse time integrated cut-off authentication (STI-CA) for cloud data storage. Indian J. Sci. Technol. 10(4), 1–11 (2017).  https://doi.org/10.17485/ijst/2017/v10i4/107893
  8. 8.
    Wenjuan, X., Zhang, X., Hongxin, H., Ahn, G.-J., Seifert, J.-P.: Remote attestation with domain-based integrity model and policy analysis. IEEE Trans. Dependable Secure. Comput. 9(3), 429–442 (2012)CrossRefGoogle Scholar
  9. 9.
    Oestreicher, K.: A forensically robust method for acquisition of iCloud data. Digital Forensics Res. Conf. Digital Inv. Elsevier 11(2), S106–S113 (2014)Google Scholar
  10. 10.
    Carbunar, B., Tripunitara, M.V.: Payments for outsourced computations. IEEE Trans. Parallel Distrib. Syst. 23(2), 313–320 (2012)CrossRefGoogle Scholar
  11. 11.
    Yang, J., Xiong, N., Vasilakos, A.V., Fang, Z., Park, D., Xianghua, X., Yoon, S., Xie, S., Yang, Y.: A fingerprint recognition scheme based on assembling invariant moments for cloud computing communications. IEEE Syst. J. 5(4), 574–583 (2011)CrossRefGoogle Scholar
  12. 12.
    Sakr, S., Liu, A., Batista, D.M., Alomari, M.: A survey of large scale data management approaches in cloud environments. IEEE Commun. Surv. Tutor. 13(3), 311–316 (2011)CrossRefGoogle Scholar
  13. 13.
    Tu, M., Li, P., Yen, I-L., Thuraisingham, B., Khan, L.: Secure data objects replication in data grid. IEEE Trans. Dependable Secur. Comput. 7(1), 50–64 (2010)Google Scholar
  14. 14.
    Hao, Z., Zhong, S., Nenghai, Yu.: A privacy-preserving remote data integrity checking protocol with data dynamics and public verifiability. IEEE Trans. Dependable Secure Comput. 23(9), 1432–1437 (2011)Google Scholar
  15. 15.
    Hashema, I.A.T., Yaqooba, I., Anuara, N.B., Mokhtara, S., Gania, A., Khanb, S.U.: The rise of “big data” on cloud computing: review and open research issues. Sci. Direct Inf. Syst. (Elsevier) 47, 98–115 (2015)Google Scholar
  16. 16.
    Shiraz, M., Gani, A., Ahmad, R.W., Shah, S.A.A., Karim, A., Rahman, Z.A.: A lightweight distributed framework for computational offloading in mobile cloud computing. PLoS One 9(8), 1–10 (2014)Google Scholar
  17. 17.
    Habiba, U., Masood, R., Shibli, M.A., Niazi, M.A.: Cloud identity management security issues and solutions: a taxonomy. Complex Adapt. Syst. Model. 2(5), 1–37 (2014)Google Scholar
  18. 18.
    Kim H., Chung, H., Kang, J.: Zero-knowledge authentication for secure multi-cloud computing environments. Adv. Comput. Sci. Ubiquitous Comput. Springer, 255–261 (2015)Google Scholar
  19. 19.
    Mehmet Sabır Kiraz: A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing, Springer. J. Ambient Intell. Humanized Comput. 7(5), 731–760 (2016)CrossRefGoogle Scholar
  20. 20.
    Namasudra, S., Roy, P.: A new secure authentication scheme for cloud computing environment. Concurr. Comput. Pract. Exp. 1–20 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.PG and Research Department of Computer ScienceErode Arts and Science CollegeErodeIndia

Personalised recommendations