Advertisement

An Efficient Forward Secure Authenticated Encryption Scheme with Ciphertext Authentication Based on Two Hard Problems

  • Renu Mary Daniel
  • Elijah Blessing Rajsingh
  • Salaja Silas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 645)

Abstract

Authenticated encryption is a cryptographic technique that concurrently establishes message confidentiality, integrity, authenticity and non-repudiation. In this paper, an efficient authenticated encryption scheme is proposed, based on the hardness of the integer factorization problem and the discrete logarithm problem on conic curves over a ring \(Z_n\). The protocol provides forward secrecy in case the sender’s private keys are compromised and supports public verifiability, as well as, ciphertext authentication by an external verifier, without full decryption. Hence, the protocol can be used for secure data sharing in untrusted cloud environments. Several attack scenarios against the scheme are analysed to confirm its validity as an authenticated encryption protocol. The security criterions are satisfied, as long as either one of the hardness assumptions hold. The scheme is implemented over conic curves, which possess interesting characteristics like effective message encoding and decoding, easily computable point operations and inverses.

Keywords

Authenticated encryption Conic curve Ciphertext authentication Forward secrecy Public verifiability 

Notes

Acknowledgements

This work was funded by Visvesvaraya PhD Scheme for Electronics and IT, Ministry of Electronics and Information Technology, Government of India.

References

  1. 1.
    Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) cost (signature)+ cost (encryption). In: Annual International Cryptology Conference, pp. 165–179. Springer, Berlin Heidelberg (1997).  https://doi.org/10.1007/BFb0052234
  2. 2.
    Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Informat. Process. Lett. 68, 227–253. Elsevier (1998).  https://doi.org/10.1016/S0020-0190(98)00167-7
  3. 3.
    Zheng, Y., Imai, H.: Efficient signcryption schemes on elliptic curves. Citeseer (1996). 10.1.1.130.4261Google Scholar
  4. 4.
    Hwang, R.J., Lai, C.H., Su, F.F.: An efficient signcryption scheme with forward secrecy based on elliptic curve. Appl. Mathemat. Comput. 167, 870–881. Elsevier (2005).  https://doi.org/10.1007/s11042-014-2283-9
  5. 5.
    Toorani, M., Beheshti, A.A.: An elliptic curve-based signcryption scheme with forward secrecy. arXiv preprint arXiv:1005.1856 (2010).  https://doi.org/10.3923/jas.2009.1025.1035
  6. 6.
    Xiang-xue, L., Ke-fei, C., Shi-qun, L.: Cryptanalysis and improvement of signcryption schemes on elliptic curves. Wuhan Univ. J. Nat. Sci. 10(1), 231–234 (2005).  https://doi.org/10.1007/BF02828657MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chow, S.S., Yiu, S.M., Hui, L.C., Chow, K.P.: Efficient forward and provably secure ID-based signcryption scheme with public verifiability and public ciphertext authenticity. In: International Conference on Information Security and Cryptology, pp. 352–369. Springer Berlin Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24691-6_26
  8. 8.
    Mohamed, E., Elkamchouchi, H.: Elliptic curve signcryption with encrypted message authentication and forward secrecy. Int. J. Comput. Sci. Netw. Secur. 9(1), 395–398 (2009)Google Scholar
  9. 9.
    Elkamchouchi, H., Nasr, M., Ismail, R.: A new efficient strong proxy signcryption scheme based on a combination of hard problems. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2009. IEEE, pp. 5123–5127 (2009).  https://doi.org/10.1109/ICSMC.2009.5346018
  10. 10.
    Hinek, M.J.: On the security of multi-prime RSA. J. Math. Cryptology 2(2), 117–147 (2008). 0.1515/JMC.2008.006Google Scholar
  11. 11.
    Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.J.: Short private exponent attacks on fast variants of RSA. UCL Crypto Group Technical Report Series CG-2002/4, University Catholique de Louvain (2002). doi:10.1.1.12.9925Google Scholar
  12. 12.
    Sun, Y., Zhang, J., Xiong, Y., Zhu, G.: Data security and privacy in cloud computing. Int. J. Distrib. Sens. Netw. (2014)Google Scholar
  13. 13.
    Chen, Z.G., Song, X.X.: A public-key cryptosystem scheme on conic curves over \(Z_n\). In: 2007 International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2183–2187. IEEE (2007).  https://doi.org/10.1109/ICMLC.2007.4370507
  14. 14.
    Bellini, E., Murru, N.: An efficient and secure RSA-like cryptosystem exploiting Rdei rational functions over conics. Finite Fields Appl. 39, 179–194 (2016).  https://doi.org/10.1016/j.ffa.2016.01.011MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zheng Fu, C.: A public key cryptosystem based on conic curves over finite field \(F_p\). ChinaCrypt, pp. 45–49, Science Press (1998)Google Scholar
  16. 16.
    Zhang, D., Liu, M., Yang, Z.: Zero-knowledge proofs of identity based on ELGAMAL on conic. In: IEEE International Conference on E-Commerce Technology for Dynamic E-Business, pp. 216–223. IEEE (2004).  https://doi.org/10.1109/CEC-EAST.2004.77
  17. 17.
    Tahat, N.M.: A new conic curve digital signature scheme with message recovery and without one-way hash functions. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 40(2), 148–153 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Shi, Y., Xiong, G.Y.: An undetachable threshold digital signature scheme based on conic curves. Appl. Math. Inf. Sci. 7(2), 823–828 (2013).  https://doi.org/10.12785/amis/070254MathSciNetCrossRefGoogle Scholar
  19. 19.
    Song, X., Chen, Z.: An efficient conic curve threshold digital signature. In: Proceedings of the 3rd WSEAS International Conference on Circuits, Systems, Signal and Telecommunications, pp. 149–153 (2009)Google Scholar
  20. 20.
    Dong, X., Qian, H., Cao, Z.: Provably secure RSA type signature based on conic curve. Wirel. Commun. Mob. Comput. 9(2), 217–225 (2009).  https://doi.org/10.1002/wcm.602CrossRefGoogle Scholar
  21. 21.
    Lu, R.X., Cao, Z.F., Zhou, Y.: Threshold undeniable signature scheme based on conic. Appl. Math. Comput. 162(1), 165–177 (2005).  https://doi.org/10.1016/j.amc.2003.12.084MathSciNetzbMATHGoogle Scholar
  22. 22.
    Dai, Z.D., Ye, D.F., Pei, D.Y., Yang, J.H.: Cryptanalysis of ElGamal type encryption schemes based on conic curves. Electron. Lett. 37(7), 426 (2001).  https://doi.org/10.1049/el:20010272
  23. 23.
    Chaudhry, S.A., Farash, M.S., Naqvi, H., Sher, M.: A secure and efficient authenticated encryption for electronic payment systems using elliptic curve cryptography. Electron. Commer. Res. 16(1), 113–139 (2016).  https://doi.org/10.1007/s10660-015-9192-5CrossRefGoogle Scholar
  24. 24.
    Yang, J.H., Chang, Y.F., Chen, Y.H.: An efficient authenticated encryption scheme based on ECC and its application for electronic payment. Inf. Technol. Control 42(4), 315–324 (2013).  https://doi.org/10.5755/j01.itc.42.4.2150Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Renu Mary Daniel
    • 1
  • Elijah Blessing Rajsingh
    • 1
  • Salaja Silas
    • 1
  1. 1.Karunya UniversityCoimbatoreIndia

Personalised recommendations