Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705
CAS
CrossRef
Google Scholar
Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W (2006) Complete oxidation of formaldehyde over Ag/MnO x–CeO 2 catalysts. Chem Eng J 118:119–125
CAS
CrossRef
Google Scholar
Wieslander G, Norbäck D, Björnsson E, Janson C, Boman G (1996) Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int Arch Occup Environ Health 7:115–124
CrossRef
Google Scholar
Liang W, Li J, Jin Y (2012) Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build Environ 51:345–350
CrossRef
Google Scholar
Goode JW (1985) Toxicology of formaldehyde. Advances in Chemistry 210:217–227. doi:10.1021/ba-1985-0210.ch014
Singh P, Chauhan SR (2016) Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: a review. Renew Sustain Energy Rev 63:269–291
CAS
CrossRef
Google Scholar
Caplain I, Cazier F, Nouali H, Mercier A, Déchaux JC, Nollet V, Joumard R, André JM, Vidon R (2006) Emissions of unregulated pollutants from European gasoline and diesel passenger cars. Atmos Environ 40:5954–5966
CAS
CrossRef
Google Scholar
Shi X, Pang X, Mu Y, He H, Shuai S, Wang J, Chen H, Li R (2006) Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmos Environ 40:2567–2574
CAS
CrossRef
Google Scholar
Agarwal AK, Shukla PC, Patel C, Gupta JG, Sharma N, Prasad RK, Agarwal RA (2016) Unregulated emissions and health risk potential from biodiesel (KB5, KB20) and methanol blend (M5) fuelled transportation diesel engines. Renew Energy 98:283–291
CAS
CrossRef
Google Scholar
Jia C, Batterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighborhoods, Part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmos Environ 42:2083–2100
CAS
CrossRef
Google Scholar
Karavalakis G, Stournas S, Bakeas E (2009) Light vehicle regulated and unregulated emissions from different biodiesels. Sci Total Environ 407:3338–3346
CAS
CrossRef
Google Scholar
Carlier P, Hannachi H, Mouvier G (1986) The chemistry of carbonyl compounds in the atmosphere—a review. Atmos Environ 20:2079–2099 (1967)
CAS
CrossRef
Google Scholar
Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278
CAS
CrossRef
Google Scholar
Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 33:357–374
CrossRef
Google Scholar
Baek SO, Kim YS, Perry R (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmos Environ 31:529–544
CAS
CrossRef
Google Scholar
Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66
CAS
CrossRef
Google Scholar
Anderson LG, Lanning JA, Barrell R, Miyagishima J, Jones RH, Wolfe P (1996) Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data. Atmos Environ 30:2113–2123
CAS
CrossRef
Google Scholar
Altshuller AP (1993) Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours. Atmos Environ Part A Gen Top 27:21–32
CrossRef
Google Scholar
Altshuller AP (1991) Chemical reactions and transport of alkanes and their products in the troposphere. J Atmos Chem 12:19–61
CAS
CrossRef
Google Scholar
Stump FD, Knapp KT, Ray WD (1996) Influence of ethanol-blended fuels on the emissions from three pre-1985 light-duty passenger vehicles. J Air Waste Manag Assoc 46:1149–1161
CAS
CrossRef
Google Scholar
Faiz A (1993) Automotive emissions in developing countries-relative implications for global warming, acidification and urban air quality. Transp Res Part A: Policy Pract 27:167–186
CrossRef
Google Scholar
Poulopoulos SG, Samaras DP, Philippopoulos CJ (2001) Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmos Environ 35:4399–4406
CAS
CrossRef
Google Scholar
Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci 24:125–164
CAS
CrossRef
Google Scholar
Takada K, Yoshimura F, Ohga Y, Kusaka J, Daisho Y (2003) Experimental study on unregulated emission characteristics of turbocharged DI diesel engine with common rail fuel injection system. SAE Technical Paper
Google Scholar
Turrio-Baldassarri L, Battistelli CL, Conti L, Crebelli R, De Berardis B, Iamiceli AL, Gambino M, Iannaccone S (2004) Emission comparison of urban bus engine fueled with diesel oil and ‘biodiesel’ blend. Sci Total Environ 327:147–162
CAS
CrossRef
Google Scholar
Peng CY, Yang HH, Lan CH, Chien SM (2008) Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmos Environ 42(5):906–915
CAS
CrossRef
Google Scholar
Benner BA Jr, Gordon GE, Wise SA (1989) Mobile sources of atmospheric polycyclic aromatic hydrocarbons: a roadway tunnel study. Environ Sci Technol 23:1269–1278
CAS
CrossRef
Google Scholar
World Health oganisation (WHO) (1987) Polynuclear aromatic hydrocarbons (PAH). Air quality guidelines for Europe. World Health Organization Regional Office Europe, Copenhagen, pp 105–117
Google Scholar
International Agency for Research on Cancer (IARC) (1983) Polynuclear aromatic compounds, part 1: chemical, environmental and experimental data. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 32
Google Scholar
Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42:1371–1388
CAS
CrossRef
Google Scholar
Brown VM, Cockram AH, Crump DR, Gardiner D (1990) Investigations of the volatile organic compound content of indoor air in homes with an odorous damp proof membrane. Proc Indoor Air 90:557–580
Google Scholar
Lee SC, Wang B (2006) Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos Environ 40:2128–2138
CAS
CrossRef
Google Scholar
Pagels J, Wierzbicka A, Nilsson E, Isaxon C, Dahl A, Gudmundsson A, Swietlicki E, Bohgard M (2009) Chemical composition and mass emission factors of candle smoke particles. J Aerosol Sci 40:193–208
CAS
CrossRef
Google Scholar
Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608
CAS
CrossRef
Google Scholar
Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921
CAS
CrossRef
Google Scholar
Borrás E, Tortajada-Genaro LA, Vázquez M, Zielinska B (2009) Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmos Environ 43:5944–5952
CrossRef
Google Scholar
Tancell PJ, Rhead MM, Trier CJ, Bell MA, Fussey DE (1995) The sources of benzo [a] pyrene in diesel exhaust emissions. Sci Total Environ 162:179–186
CAS
CrossRef
Google Scholar
Schauer JJ, Kleeman MJ, Cass GR, Simoneit BR (1999) Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587
CAS
CrossRef
Google Scholar
Yunus Khan TM, Atabani AE, Badruddin IA, Ankalgi RF, Mainuddin Khan TK, Badarudin A (2015) Ceiba pentandra, Nigella sativa and their blend as prospective feedstocks for biodiesel. Ind Crops Product 65:367–373
CAS
CrossRef
Google Scholar
Di Y, Cheung CS, Huang Z (2009) Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci Total Environ 407:835–846
CAS
CrossRef
Google Scholar
Bakeas Evangelos B, Argyris Dimitrios I, Siskos Panayotis A (2003) Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere 52(5):805–813
CAS
CrossRef
Google Scholar
IARC (International Agency for Research on Cancer) (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monogr Eval Carcinog Risks Hum 92:765–771
Google Scholar
Samet J (1990) Environmental controls and lung disease. Am Rev Respir Dis 142:915–939
CrossRef
Google Scholar
Singh A, Nair KC, Kamal R, Bihari V, Gupta MK, Mudiam MK, Satyanarayana GN, Raj A, Haq I, Shukla NK, Khan AH (2016) Assessing hazardous risks of indoor airborne polycyclic aromatic hydrocarbons in the kitchen and its association with lung functions and urinary PAH metabolites in kitchen workers. Clin Chim Acta 452:204–213
CAS
CrossRef
Google Scholar
Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50:395–403
CAS
Google Scholar
IPCS (International Programme On Chemical Safety) (2010) Polycyclic aromatic hydrocarbons, selected non-heterocyclic. <http://www.inchem.org/documents/ehc/ehc/ehc202.htm>
Carter WP (1995) Computer modeling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds. Atmos Environ 29:2513–2527
CAS
CrossRef
Google Scholar
Correa SM, Arbilla G (2008) Carbonyl emissions in diesel and biodiesel exhaust. Atmos Environ 42:769–775
CrossRef
Google Scholar
World Health Organization (1989) Evaluation of carcinogenic risks to humans: diesel and gasoline engine exhausts and some Nifroarines. IARC Monographs, International Agency for Research on Cancer. Lyon, France
Google Scholar
Emmelin A, Nyström L, Wall S (1993) Diesel exhaust exposure and smoking: a case-referent study of lung cancer among Swedish dock workers. Epidemiology 4:237–244
CAS
CrossRef
Google Scholar
Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123
CrossRef
Google Scholar
Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer. Chest 123:72–82
CrossRef
Google Scholar
Domingo-Garcia M, Fernández-Morales I, Lopez-Garzon FJ, Moreno-Castilla C, Perez-Mendoza M (1999) On the adsorption of formaldehyde at high temperatures and zero surface coverage. Langmuir. 15:3226–3231
CAS
CrossRef
Google Scholar
Matsuo Y, Nishino Y, Fukutsuka T, Sugie Y (2008) Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups. Carbon 46:1162–1163
CAS
CrossRef
Google Scholar
Liang WJ, Li J, Li JX, Zhu T, Jin YQ (2010) Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. J Hazard Mater 175:1090–1095
CAS
CrossRef
Google Scholar
Xu Z, Qin N, Wang J, Tong H (2010) Formaldehyde biofiltration as affected by spider plant. Biores Technol 101:6930–6934
CAS
CrossRef
Google Scholar
Terelak K, Trybula S, Majchrzak M, Ott M, Hasse H (2005) Pilot plant formaldehyde distillation: experiments and modelling. Chem Eng Process 44:671–676
CAS
CrossRef
Google Scholar
Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK (2010) Vanadia–titania thin films for photocatalytic degradation of formaldehyde in sunlight. Appl Catal A 374:103–109
CAS
CrossRef
Google Scholar
Sekine Y (2002) Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmos Environ 36:5543–5547
CAS
CrossRef
Google Scholar
Spivey JJ (1987) Complete catalytic oxidation of volatile organics. Ind Eng Chem Res 26:2165–2180
CAS
CrossRef
Google Scholar
Pei J, Zhang JS (2011) Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac R Res 17:476–503
CAS
Google Scholar
Ding HX, Zhu AM, Lu FG, Xu Y, Zhang J, Yang XF (2006) Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. J Phys D Appl Phys 39:3603
CAS
CrossRef
Google Scholar
Wu PC, Li YY, Lee CC, Chiang CM, Su HJ (2003) Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 13:359–363
CAS
CrossRef
Google Scholar
Zhu Z, Wu RJ (2015) The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem Eng 50:276–281
CAS
CrossRef
Google Scholar
Sharma M, Agarwal AK, Bharathi KV (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028
CAS
CrossRef
Google Scholar
Tang S, Frank BP, Lanni T, Rideout G, Meyer N, Beregszaszy C (2007) Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems. Environ Sci Technol 41:5037–5043
CAS
CrossRef
Google Scholar
Sharp CA, Howell SA, Jobe J (2000) The effect of biodiesel fuels on transient emissions from modern diesel engines, part II unregulated emissions and chemical characterization. SAE Technical Paper
Google Scholar
Jo WK, Park JH, Chun HD (2002) Photocatalytic destruction of VOCs for in-vehicle air cleaning. J Photochem Photobiol A 148:109–119
CAS
CrossRef
Google Scholar
Agency for Toxic Substance and Disease Registry. https://www.atsdr.cdc.gov/phs/phs.asp?id=218&tid=39
Agency for Toxic Substances and Disease Registry (ATSDR) (1994) Toxicological profile for acetone. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/phs/phs.asp?id=3&tid=1
Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological profile for Acrolein. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/phs/phs.asp?id=554&tid=102
New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/0196.pdf
New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/0299.pdf
The Agency for Toxic Substances and Disease Registry (ATSDR) https://www.atsdr.cdc.gov/MMG/MMG.asp?id=947&tid=197
Clayton GD, Clayton FE (1981) Patty’s industrial hygiene and toxicology, 3rd edn. Wiley, New York. ISBN 0-471-16042-3
Google Scholar
Ernstgård L, Löf A, Wieslander G, Norbäck D, Johanson G (2007) Acute effects of some volatile organic compounds emitted from water-based paints. J Occup Environ Med 49:880–889
CrossRef
Google Scholar
Faroon O, Roney N, Taylor J, Ashizawa A, Lumpkin MH, Plewak DJ (2008) Acrolein health effects. Toxicol Ind Health 24:447–490
CAS
CrossRef
Google Scholar
New jersey Department of Health and senior Services Hazardous Substance Fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/1598.pdf
Toxicological Data Network, TOXNET. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+5361
http://www.inchem.org/documents/sids/sids/110623.pdf
IPCS (1993) Benzene. Geneva, World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 150
Google Scholar
Donald JM, Hooper K, Hopenhayn-Rich C (1991) Reproductive and developmental toxicity of toluene: a review. Environ Health Perspect 94:237
CAS
CrossRef
Google Scholar
Agency for toxic substance and disease registry. Toxic substances portal-toluene. https://www.atsdr.cdc.gov/phs/phs.asp?id=159&tid=29
The National Institute for Occupational Safety and Health (NIOSH). m-Xylene. Publication No. 2004-149. https://www.cdc.gov/niosh/npg/npgd0669.html
Agency for toxic substance and disease registry. PUBLIC HEALTH STATEMENT Xylene. https://www.atsdr.cdc.gov/phs/phs.asp?id=293&tid=53
The National Institute for Occupational Safety and Health (NIOSH). O-xylene, 22 July 2015. https://www.cdc.gov/niosh/ipcsneng/neng0084.html
National Institute for Occupational Safety and Health (NIOSH) Education and Information Division, 11 Apr 2016. https://www.cdc.gov/niosh/npg/npgd0264.html
Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological Profile for Ethylbenzene (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA
Google Scholar
New Jersey department of health and senior services, hazardous substance fact sheet. http://nj.gov/health/eoh/rtkweb/documents/fs/1607.pdf
Hazardous Substances Data Bank (HSDB) [online database] (2010) Bethesda, MD: National Library of Medicine. http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen?HSDB. [Reference list]
Lim HC (2006) Mothballs: bringing safety issues out from the closet. Singapore Med J 47(11):1003
CAS
Google Scholar
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2002) International Agency for Research on Cancer, World Health Organization. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. World Health Organization
Google Scholar
Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Public Health Statement, Polycyclic Aromatic Hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/phs/phs.asp?id=120&tid=25