Advertisement

Primary Organic Aerosols

  • Deepika BhattuEmail author
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Primary organic aerosol (POA) constitutes the emissions from both natural (vegetation and micro-organisms) and anthropogenic sources such as combustion of fossil fuels and biofuels, and open biomass burning (forest fire). Semi-volatile nature of POA emissions leads to overestimation in the traditional emission inventories and chemical transport models. Another class of primarily emitted volatile species, i.e., intermediate volatile organic compounds (IVOCs), present around 0.28–2.5 times of POA, potential secondary organic aerosols (SOAs) precursors, also goes unnoticed. Phase partitioning mechanisms depending on their source, dilution, and volatility distribution make the contribution of POA to overall organic aerosols (OA) budget controversial. Further, the complex and higher particle emission rates and the gas-phase chemical transformation processes lead to the conceptual ambiguity between primary and secondary organic aerosol, thus rendering physico-chemical and optical properties to be least understood. Researchers have overcome the need of complete molecular identification of gaseous species to simulate the gas-particle partitioning by developing a two-dimensional volatility basis scheme (2-D-VBS) that employs the vapor pressure and degree of oxygenation. Here, we also illustrate the chemical composition-dependent volatility distributions for different sources used to ascertain the correct POA emission factors. This suggest that the policymakers and environmental regulating authorities need to take into account the SVOCs and IVOCs causing positive and negative sampling artifacts in order to correctly account for POA source contributions.

Abbreviations

BC

Black carbon

BB

Biomass burning

COA

Total organic aerosol mass concentration

EC

Elemental carbon

eBC

Equivalent black carbon

HR-ToF-AMS

High-resolution time-of-flight aerosol mass spectrometer

IVOC

Intermediate volatile organic compound

OA

Organic aerosol

OC

Organic carbon

OM:OC

Organic matter to organic carbon ratio

PM

Particulate matter

POA

Primary organic aerosol

rBC

Refractory black carbon

SOA

Secondary organic aerosol

VOC

Volatile organic compound

2D-VBS

2 dimensional—Volatile basis set

References

  1. 1.
    Aiken AC, DeCarlo PF, Kroll JH, Worsnop DR, Huffman JA, Docherty KS, Ulbrich IM, Mohr C, Kimmel JR, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann PJ, Canagaratna MR, Onasch TB, Alfarra MR, Prevot ASH, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez JL (2008) O/C and Om/Oc ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485CrossRefGoogle Scholar
  2. 2.
    Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058CrossRefGoogle Scholar
  3. 3.
    Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241CrossRefGoogle Scholar
  4. 4.
    Bond TC, Streets DG, Yarber KF, Nelson SM, Woo J.-H, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res: Atmos 109: n/a-n/aGoogle Scholar
  5. 5.
    Cappa CD, Jimenez JL (2010) Quantitative estimates of the volatility of ambient organic aerosol. Atmos Chem Phys 10:5409–5424CrossRefGoogle Scholar
  6. 6.
    Cappa CD, Wilson KR (2011) Evolution of organic aerosol mass spectra upon heating: implications for Oa phase and partitioning behavior. Atmos Chem Phys 11:1895–1911CrossRefGoogle Scholar
  7. 7.
    Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of improve and niosh carbon measurements. Aerosol Sci Technol 34:23–34CrossRefGoogle Scholar
  8. 8.
    Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in u.s. air quality studies. Atmos Environ Part A. Gen Top 27:1185–1201CrossRefGoogle Scholar
  9. 9.
    Donahue NM, Robinson AL, Stanier CO, Pandis SN (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol 40:2635–2643CrossRefGoogle Scholar
  10. 10.
    Grieshop AP, Miracolo MA, Donahue NM, Robinson AL (2009) Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermo denuder measurements. Environ Sci Technol 43:4750–4756CrossRefGoogle Scholar
  11. 11.
    Hildemann LM, Cass GR, Markowski GR (1989) A dilution stack sampler for collection of organic aerosol emissions: design, characterization and field tests. Aerosol Sci Technol 10:193–204CrossRefGoogle Scholar
  12. 12.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123CrossRefGoogle Scholar
  13. 13.
    Lack DA, Moosmüller H, McMeeking GR, Chakrabarty RK, Baumgardner D (2014) Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Anal Bioanal Chem 406:99–122CrossRefGoogle Scholar
  14. 14.
    May AA, Levin EJT, Hennigan CJ, Riipinen I, Lee T, Collett JL, Jimenez JL, Kreidenweis SM, Robinson AL (2013) Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. J Geophys Res: Atmos 118:1127–311338Google Scholar
  15. 15.
    Pankow JF (1994) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188CrossRefGoogle Scholar
  16. 16.
    Riipinen I, Pierce JR, Donahue NM, Pandis SN (2010) Equilibration time scales of organic aerosol inside thermodenuders: evaporation kinetics versus thermodynamics. Atmos Environ 44:597–607CrossRefGoogle Scholar
  17. 17.
    Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262CrossRefGoogle Scholar
  18. 18.
    Robinson AL, Grieshop AP, Donahue NM, Hunt SW (2010) Updating the conceptual model for fine particle mass emissions from combustion systems Allen L. Robinson. J Air Waste Manag Assoc 60:1204–1222CrossRefGoogle Scholar
  19. 19.
    Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109CrossRefGoogle Scholar
  20. 20.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180CrossRefGoogle Scholar
  21. 21.
    Shrivastava MK, Lipsky EM, Stanier CO, Robinson AL (2006) Modeling semivolatile organic aerosol mass emissions from combustion systems. Environ Sci Technol 40:2671–2677CrossRefGoogle Scholar
  22. 22.
    Wu C, Huang XHH, Ng WM, Griffith SM, Yu JZ (2016) Inter-comparison of Niosh and improve protocols for Oc and Ec determination: implications for inter-protocol data conversion. Atmos Meas Tech 9:4547–4560CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations