Advertisement

An Ions-Medicated Single Molecular Multi-functional DNA Cascade Logic Circuit and Signal Amplifier Model

  • Bingjie Guo
  • Xiangxiang Chen
  • Tao Wu
  • Yafei DongEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 791)

Abstract

In this paper, a single molecular multi-functional DNA cascade logic circuit and signal amplifier model was demonstrated by two single molecular multi-functional ions DNA probe(SMIP) to detect environment mercury and silver ion pollution, these two SMIP random coil structures turned into different hairpin-like structures with T-Hg\(^{2+}\)-T or C-Ag\(^{+}\)-C via inputting mercury and silver ions, then, use the SMIP structure “OR” and “AND” logic gate and unimolecular mulfunctional DNA logic amplifier model (UMDA). Finally, we proved the feasibility of our model by PAGE and fluorescence alteration.

Keywords

Molecular Multi-functional Ions-medicated DNA computing 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61572302 and No. 61272246.

References

  1. 1.
    Chansuvarn, W., Tuntulani, T., Imyim, A.: Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. Trac-Trend. Anal. Chem. 65, 83–96 (2014)CrossRefGoogle Scholar
  2. 2.
    Lee, J.S., Han, M.S., Mirkin, C.A.: Colorimetric detection of mercuric ion (Hg 2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. 46(22), 4093 (2007)CrossRefGoogle Scholar
  3. 3.
    Wang, S., Xu, H., Yang, Q., et al.: A triphenylamine-based colorimetric and turn-on fluorescent probe for detection of cyanide anions in live cells. RSC Adv. 5(59), 47990–47996 (2015)CrossRefGoogle Scholar
  4. 4.
    Li, L., Li, B., Di, C., et al.: Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem. 122(3), 895–900 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, L., Li, B., Qi, Y., et al.: Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 393(8), 2051–7 (2009)CrossRefGoogle Scholar
  6. 6.
    Miyake, Y., Togashi, H., Tashiro, M., et al.: Mercury II-mediated formation of thymine-Hg II-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128, 2172–2173 (2006)CrossRefGoogle Scholar
  7. 7.
    Zuo, X., Zhang, H., Zhu, Q., et al.: A dual-color fluorescent biosensing platform based on WS2 nanosheet for detection of Hg(2+) and Ag(+). Biosens. Bioelectron. 85, 464 (2016)CrossRefGoogle Scholar
  8. 8.
    Gómez-Ariza, J.L., Lorenzo, F., Garcia-Barrera, T.: Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal. Bioanal. Chem. 382(2), 485–492 (2005)CrossRefGoogle Scholar
  9. 9.
    Fong, B.M.W., Siu, T.S., Lee, J.S.K., et al.: Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J. Anal. Toxicol. 31(5), 281 (2017)CrossRefGoogle Scholar
  10. 10.
    Qing, Z., He, X.: Colorimetric multiplexed analysis of mercury and silver ions by using a unimolecular DNA probe and unmodified gold nanoparticles. Anal. Methods 4(10), 3320–3325 (2012)CrossRefGoogle Scholar
  11. 11.
    Deng, W., Tan, Y., Li, Y., et al.: Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Microchim. Acta 169(3–4), 367–373 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhao, J., Zhu, L., Guo, C., et al.: A new electrochemical method for the detection of cancer cells based on small molecule-linked DNA. Biosens. Bioelectron. 49(11), 329–333 (2013)CrossRefGoogle Scholar
  13. 13.
    Wang, F., Liu, X., Willner, I.: DNA Switches: from Principles to Applications. Angew. Chem. Int. Edit. 54(4), 1098–129 (2015)CrossRefGoogle Scholar
  14. 14.
    Miyake, Y., Togashi, H., Tashiro, M., et al.: MercuryII-mediated formation of Thymine-HgII-Thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128(7), 2172–3 (2006)CrossRefGoogle Scholar
  15. 15.
    Tanaka, Y., Oda, S., Yamaguchi, H., et al.: 15N–15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA Duplex. J. Am. Chem. Soc. 129(2), 244–5 (2007)CrossRefGoogle Scholar
  16. 16.
    Ono, A., Cao, S., Togashi, H., et al.: Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 39(39), 4825 (2008)CrossRefGoogle Scholar
  17. 17.
    Feng, W., Xue, X., Liu, X.: One-step, room-temperature, colorimetric detection of mercury (Hg(2+)) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130(11), 3244–3245 (2008)CrossRefGoogle Scholar
  18. 18.
    He, X., Qing, Z., Wang, K., et al.: Engineering a unimolecular multifunctional DNA probe for analysis of Hg2+ and Ag+. Anal. Methods. 4(2), 345–347 (2012)CrossRefGoogle Scholar
  19. 19.
    Yun, L., Yang, L., Mao, X., et al.: Electrochemical detection of glutathione based on Hg 2+ -mediated strand displacement reaction strategy. Biosens. Bioelectron. 85, 664–668 (2016)CrossRefGoogle Scholar
  20. 20.
    Farhadtoosky, S., Jahanian, A.: Customized placement algorithm of nanoscale DNA logic circuits. J. Circuit. Syst. Comp. 26(10), 1750150 (2017)CrossRefGoogle Scholar
  21. 21.
    Yang, J., Dong, C., Dong, Y., et al.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. Acs Appl. Mater. Inter. 6(16), 14486–14492 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bingjie Guo
    • 1
  • Xiangxiang Chen
    • 3
  • Tao Wu
    • 2
  • Yafei Dong
    • 1
    • 2
    Email author
  1. 1.College of life sciencesShannxi Normal universityXi’anChina
  2. 2.College of computer sciencesShannxi Normal universityXi’anChina
  3. 3.Software Institute, ShaanXi Electronic Technical CollegeXi’anChina

Personalised recommendations