Skip to main content

Explosion-Induced Shock Waves Through a Medium and Associated Structural Response

  • Chapter
  • First Online:
Blast Mitigation Strategies in Marine Composite and Sandwich Structures
  • 1443 Accesses

Abstract

Propagation of shock waves through a medium and its associated study of the fluid–structure interaction require a proper understanding of the shock response of the medium. In many situations, the medium characteristic may change as a result of shock loading which needs to be understood properly before one tries to develop blast mitigation solutions. The manuscript demonstrates situations in which the medium undergoes phase transformation (liquid water changing to ice VII), molecular dissociation, and ionization (air medium) and its associated effect on the calculation of fluid–structure interaction parameter. Once the loading is determined, the structural response is also necessary to be understood carefully and there may be situations in which conventional constitutive models in standard continuum mechanics solution may not be realistic to properly characterize the situation. Such cases are demonstrated in this manuscript citing examples of shock-induced delamination in sandwich composite materials, structural phase transformations in metals, and molecular dissociation in polymers. Through all these discussions the primary objective of this manuscript is to provide cautionary guidelines through which blast mitigation strategies for structures may be conceived. Almost all the works described in this manuscript are based on the years of studies carried out by the author’s group at IIT Kharagpur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Taylor, G. I. (1963). Scientific papers. In Batchelor, G. K. (Eds.), The scientific papers of Sir Geofrey Ingham Taylor (Vol. 3, pp. 287–303). Aerodynamics and the mechanics of projectiles and explosions. Cambridge University Press.

    Google Scholar 

  2. Cole, R. H. (1948). Underwater explosions. Princeton, New Jersey: Princeton University Press.

    Book  Google Scholar 

  3. Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford University Press.

    Google Scholar 

  4. Kambouchev, N., Radovitzky, R., & Noels, L. (2006). Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures. Journal of Applied Physics, 100, 063519.

    Article  Google Scholar 

  5. Kambouchev, N., Radovitzky, R., & Noels, L. (2007). Fluid-structure Interaction effects in the dynamic response of free standing plates to uniform shock loading. ASME Journal of Applied Mechanics, 74, 1042–1045.

    Article  Google Scholar 

  6. Brode, H. L. (1959). Blast wave from a spherical charge. Physics of Fluids, 2, 217–229.

    Article  MATH  Google Scholar 

  7. Vincenti, W. G., & Kruger, C. H. (1965). Introduction to physical gas dynamics. Malabar, Florida: Krieger Publishing Company.

    Google Scholar 

  8. Zeldovich, Y., & Razier, Y. (1966). Physics of shock wave and high temperature hydrodynamic phenomena. New York: Academic Press.

    Google Scholar 

  9. Von Neumann, J., & Richtmyer, R. (1950). A method for numerical computation of hydrodynamic shocks. Journal of Applied Physics, 21, 232–237.

    Article  MATH  Google Scholar 

  10. Peng, W., Zhang, Z., Gogos, G., & Gazonas, G. (2011). Fluid-structure interactions for blast wave mitigation. ASME Journal of Applied Mechanics, 78, 031016.

    Article  Google Scholar 

  11. Baker, W. E. (1973). Explosions in air. Austin, Texas: University of Texas Press.

    Google Scholar 

  12. Brode, H. L. (1977). Quick estimate of peak overpressure from two simultaneous blast waves. Technical Report DNA 4503T of Defense Nuclear Agency, Marina Del Ray, California.

    Google Scholar 

  13. Guzas, E. L., & Earls, C. J. (2010). Air blast load generation for simulating structural response. Steel and Composite Structures, 10, 429–455.

    Article  Google Scholar 

  14. FEMA-426. (2003). Reference manual to mitigate potential terrorist attacks against buildings. Washington DC: Federal Emergency Management Agency.

    Google Scholar 

  15. Vaziri, A., & Hutchinson, J. W. (2007). Metal sandwich plates subject to intense air shocks. International Journal of Solids and Structures, 44, 2021–2035.

    Article  MATH  Google Scholar 

  16. Aleyaasin, M., Harrigan, J., & Reid, S. (2015). Air blast response of cellular materials with a face plate: An analytical-numerical approach. International Journal of Mechanical Sciences, 91, 64–70.

    Article  Google Scholar 

  17. Ghoshal, R., & Mitra, N. (2015). High-intensity air-explosion-induced shock loading of structures: Consideration of a real-gas in modelling a nonlinear compressible medium. Proceedings of the Royal Society A, 471, 20140825.

    Article  MathSciNet  MATH  Google Scholar 

  18. Swisdak, M. M. (1978). Explosion effects and properties—Part II: Explosion effects in water. Technical Report, Naval Surface Weapons Center, Dahlgren, Virginia.

    Google Scholar 

  19. Dolan, D., Johnson, J., & Gupta, Y. M. (2005). Nanosecond freezing of water under multiple shock wave compression: Continuum modeling and wave profile measurements. The Journal of Chemical Physics, 123, 064702.

    Article  Google Scholar 

  20. Dolan, D., Knudson, M., Hall, C., & Deeney, C. (2007). A metastable limit for compressed liquid water. Nature Physics, 3, 339–342.

    Article  Google Scholar 

  21. Men, Z., Fang, W., Li, D., Li, Z., & Sun, C. (2014). Raman spectra from symmetric hydrogen bonds in water by high intensity laser induced breakdown. Science Report, 4, 4606.

    Article  Google Scholar 

  22. Hemley, R., Jephcoat, A., Mao, H., Zha, C., Finger, L., & Cox, D. (1987). Static compression of H2O ice to 128 GPa. Nature, 737.

    Google Scholar 

  23. Goncharov, A., Struzhkin, V., Somayazulu, M., Hemley, R., & Mao, H. (1996). Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen bonded phase. Science, 273(5272), 218–220.

    Article  Google Scholar 

  24. Salzmann, C. G., Radaelli, P. G., Hallbrucker, A., Mayer, E., & Finney, J. L. (2006). The preparation and structures of hydrogen ordered phases of ice. Science, 311(5768), 1758–1761.

    Article  Google Scholar 

  25. Bogdanov, G., & Rybakov, A. (1992). Anomalies of shock compressibility of water. Journal of Applied Mechanics and Technical Physics, 33, 162–165.

    Article  Google Scholar 

  26. Rybakov, A. (1996). Phase transformation of water under shock compression. Journal of Applied Mechanics and Technical Physics, 37, 629–633.

    Article  Google Scholar 

  27. Neogi, A., & Mitra, N. (2016). Shock induced phase transition of water: Molecular dynamics investigations. Physics of Fluids, 28, 027104.

    Article  Google Scholar 

  28. Aragones, J., Conde, M., Noya, E., & Vega, C. (2009). The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of plastic crystal phase. Physical Chemistry Chemical Physics: PCCP, 11, 543.

    Article  Google Scholar 

  29. Goldman, N., Reed, E. J., Kuo, I.-F. W., Fried, L. E., Mundy, C. J., & Curioni, A. (2009). Ab-initio simulation of the equation of state and kinetics of shocked water. The Journal of Chemical Physics, 130, 124517.

    Article  Google Scholar 

  30. Neogi, A., & Mitra, N. (2016). Shock compression of polyvinylchloride. Journal of Applied Physics, 119, 165903.

    Article  Google Scholar 

  31. Liu, Z., & Young, Y. (2008). Transient response of a submerged plate subject to underwater shock loading: An analytical perspective. ASME Journal of Applied Mechanics, 75, 044504.

    Article  Google Scholar 

  32. Ghoshal, R., & Mitra, N. (2012). Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: Nonlinear compressibility effects in fluid structure interaction. Journal of Applied Physics, 112, 024911.

    Article  Google Scholar 

  33. Ghoshal, R., & Mitra, N. (2016). Underwater explosion induced shock loading of structures: Influence of water depth, salinity and temperature. Ocean Engineering, 126, 22–28.

    Article  Google Scholar 

  34. Ghoshal, R., & Mitra, N. (2014). On core compressibility of sandwich composite panels subjected to intense underwater shock loads. Journal of Applied Physics, 115, 024905.

    Article  Google Scholar 

  35. Ghoshal, R. (2015). Non-contact explosion induced shock wave response of structures. Ph.D. Thesis, Indian Institute of Technology Kharagpur, India.

    Google Scholar 

  36. Ben-Dor, G. (2007). Shock wave reflection phenomena. Berlin Heidelberg: Springer.

    MATH  Google Scholar 

  37. Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21, 31–48.

    Article  Google Scholar 

  38. Johnson, G. R., & Holmquist, T. J. (1994). An improved computational constitutive model for brittle materials. In Schwartz, S. C., Shaner, J. W., Samara, G. A., Ross, M. (Eds.), High pressure science and technology—1993, American Institute of Physics conference proceedings, no. 309, pp. 981–984. New York: AIP Press.

    Google Scholar 

  39. Zerilli, F. J., & Armstrong, R. W. (1987). Dislocation-mechanics based constitutive relations for material dynamics calculations. Journal of Applied Physics, 61, 1816–1825.

    Article  Google Scholar 

  40. Steinberg, D. J., & Lund, C. M. (1989). A constitutive model for strain rates from 10−4 to 106 s−1. Journal of Applied Physics, 65, 1528–1533.

    Article  Google Scholar 

  41. Preston, D. L., Tonks, D. L., & Wallace, D. C. (2003). Model of plastic deformation for extreme loading conditions. Journal of Applied Physics, 93, 211–220.

    Article  Google Scholar 

  42. Patra, A. (2017). Identification and mitigation of interfacial delamination in sandwich composites. Ph.D. Thesis, Indian Institute of Technology Kharagpur, India.

    Google Scholar 

  43. Mitra, N. (2010). A methodology for improving shear performance of marine grade sandwich composites: Sandwich composite panel with shear keys. Composite Structures, 92, 1065–1072.

    Article  Google Scholar 

  44. Mitra, N., & Raja, B. R. (2012). Improving delamination resistance capacity of sandwich composite panels with initial face/core debond. Composites Part B, 43, 1604–1612.

    Article  Google Scholar 

  45. Patra, A., & Mitra, N. (2014). Interface fracture of sandwich composites: Influence of MWCNT sonicated epoxy resin. Composites Science and Technology, 101, 94–101.

    Article  Google Scholar 

  46. Patra, A., & Mitra, N. (2016). Mixed mode fracture of sandwich composites: Performance improvement with multiwalled carbon nanotube sonicated resin. Journal of Sandwich Structures. http://doi.org/10.1177/1099636216656485.

  47. Neogi, A., & Mitra, N. (2017). Evolution of dislocation mechanism in single crystal Cu under shock loading in different directions. Modelling and Simulation in Materials Science and Engineering, 25, 025013.

    Article  Google Scholar 

  48. Neogi, A., & Mitra, N. (2017). Shock induced deformation response of single crystal copper: Effect of crystallographic orientations. Computational Materials Science, 131, 141–151.

    Article  Google Scholar 

  49. Neogi, A., & Mitra, N. (2017). A metastable phase of shocked bulk single crystal copper: An atomistic simulation study. Scientific Reports, 7, 7337.

    Google Scholar 

  50. Rawat, S., & Mitra, N. (2017). Compression twinning and structural phase transformation of single crystal Titanium under uniaxial compressive strain conditions: Comparison of interatomic potentials. Computational Materials Science, 126, 228–237.

    Article  Google Scholar 

  51. Neogi, A., & Mitra, N. (2014). On shock response of nano void closed/open cell Copper material: Nonequilibrium molecular dynamic simulations. Journal of Applied Physics, 115, 013504.

    Article  Google Scholar 

  52. Grujicic, M., Bell, W. C., Pandurangan, B., et al. (2010). Blast wave impact mitigation capability of polyurea when used as helmet suspension pad material. Materials and Design, 31, 4050–4065.

    Article  Google Scholar 

  53. Grujicic, M., Yavari, R., Snipes, J. S., et al. (2012). Molecular level computational investigation of shockwave mitigation capability of polyurea. Journal Materials Science, 47, 8197–8215.

    Article  Google Scholar 

  54. Grujicic, M., Snipes, J., & Ramaswami, S. (2015). Mesoscale computational investigation of polyurea microstructure and its role in shockwave attenuation/dispersion. AIMS Materials Science, 2(3), 163–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjan Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, N. (2018). Explosion-Induced Shock Waves Through a Medium and Associated Structural Response. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics