Skip to main content

Elastic Metamaterials for Blast Wave Impact Mitigation

  • Chapter
  • First Online:
Blast Mitigation Strategies in Marine Composite and Sandwich Structures

Abstract

In the following chapter, two types of dissipative multi-resonator elastic metamaterials are considered for the broadband attenuation/mitigation of elastic waves. The first microstructural design consists of a triatomic mass-in-mass lattice where the influence of the internal damping amplitudes on broadband energy absorption is examined. The second metamaterial design considered is constructed from a sandwich beam containing multiple dissipative interior resonators. By utilizing the locally resonant motions of the internal resonant structures and intrinsic damping/viscoelastic properties of the metamaterial microstructure, broadband energy absorption can be clearly demonstrated for both microstructural designs. The underlying attenuation mechanisms in both designs are a negative effective mass and an effective metadamping coefficient that occur near the local resonant frequencies of the internal resonant masses. Based on these two working mechanisms, it is numerically demonstrated that the two metamaterial designs can strongly mitigate elastic waves over extremely broad frequency ranges at subwavelength scale. These elastic metamaterial designs have a wide range of potential applications including the suppression of blast or shock waves capable of severely damaging nearby structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966–3969.

    Article  Google Scholar 

  2. Tanaka, T., Ishikawa, A., & Kawata, S. (2006). Unattenuated light transmission through the interface between two materials with different indices of refraction using magnetic metamaterials. Physical Review B, 73, 125423.

    Article  Google Scholar 

  3. Cai, W., & Shalaev, V. (2010). Optical metamaterials: fundamentals and applications. New York: Springer.

    Book  Google Scholar 

  4. Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70, 055602(R).

    Article  Google Scholar 

  5. Fang, N., Lee, H., Sun, C., et al. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308, 534–537.

    Article  Google Scholar 

  6. Yang, Z., Mei, J., Yang, M., et al. (2008). Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 101, 204301.

    Article  Google Scholar 

  7. Mei, J., Ma, G. C., Yang, M., et al. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communication, 3, 756.

    Article  Google Scholar 

  8. Chen, Y. Y., Huang, G. L., Zhou, X. M., et al. (2014). Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. Journal of the Acoustic Society of America, 136, 969–979.

    Article  Google Scholar 

  9. Chen, Y. Y., Huang, G. L., Zhou, X. M., et al. (2014). Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model. Journal of the Acoustic Society of America, 136, 2926–2934.

    Article  Google Scholar 

  10. Liu, Z., Zhang, X., Mao, Y., et al. (2000). Locally resonant sonic materials. Science, 289, 1734–1736.

    Article  Google Scholar 

  11. Yao, S. S., Zhou, X. M., & Hu, G. K. (2008). Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics, 10, 043020.

    Article  Google Scholar 

  12. Huang, H. H., Sun, C. T., & Huang, G. L. (2009). On the negative mass density in acoustic metamaterials. International Journal of Engineering Science, 47, 610–617.

    Article  Google Scholar 

  13. Lai, Y., Wu, Y., Sheng, P., et al. (2011). Hybrid elastic solids. Nature Materials, 10, 620–624.

    Article  Google Scholar 

  14. Liu, X. N., Hu, G. K., Huang, G. L., et al. (2011). An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98, 251907.

    Article  Google Scholar 

  15. Zhu, R., Liu, X. N., Hu, G. K., et al. (2014). Negative refraction of elastic waves at the deep subwavelength scale in a single-phase metamaterial. Nature Communication, 5, 5510.

    Article  Google Scholar 

  16. Chen, J. S., & Sun, C. T. (2011). Dynamic behavior of a sandwich beam with internal resonators. Journal of Sandwich Structures & Materials, 13, 391–408.

    Article  Google Scholar 

  17. Chen, J. S., Sharma, B., & Sun, C. T. (2011). Dynamic behaviour of sandwich structure containing spring-mass resonators. Composite Structures, 93, 2120–2125.

    Article  Google Scholar 

  18. Sharma, B., & Sun, C. T. (2016). Impact load mitigation in sandwich beams using local resonators. Journal of Sandwich Structures & Materials, 18, 50–64.

    Article  Google Scholar 

  19. Huang, G. L., & Sun, C. T. (2010). Band gaps in a multiresonator acoustic metamaterial. Journal of Vibration and Acoustics, 132, 031003.

    Article  Google Scholar 

  20. Tan, K. T., Huang, H. H., & Sun, C. T. (2014). Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. International Journal of Impact Engineering, 64, 20–29.

    Article  Google Scholar 

  21. Zhu, R., Liu, X. N., Hu, G. K., et al. (2014). A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333, 2759–2773.

    Article  Google Scholar 

  22. Chen, J. S., & Huang, Y. J. (2016). Wave propagation in sandwich structures with multiresonators. Journal of Vibration and Acoustics, 138, 041009.

    Article  Google Scholar 

  23. Hussein, M. I., & Frazier, M. J. (2013). Metadamping: An emergent phenomenon in dissipative metamaterials. Journal of Sound and Vibration, 332, 4767–4774.

    Article  Google Scholar 

  24. Manimala, J. M., & Sun, C. T. (2014). Microstructural design studies for locally dissipative acoustic metamaterials. Journal of Applied Physics, 135, 023518.

    Article  Google Scholar 

  25. Pai, P. F., Peng, H., & Jiang, S. (2014). Acoustic metamaterial beams based on multi-frequency vibration absorbers. International Journal of Mechanical Sciences, 79, 195–205.

    Article  Google Scholar 

  26. Del Prete, E., Chinnayya, A., Domergue, L., et al. (2013). Blast wave mitigation by dry aqueous foams. Shock Waves, 23, 39–53.

    Article  Google Scholar 

  27. Su, Z., Peng, W., Zhang, Z., et al. (2007). Numerical simulation of a novel blast wave mitigation device. International Journal of Impact Engineering, 35, 336–346.

    Article  Google Scholar 

  28. Su, Z., Peng, W., Zhang, Z., et al. (2009). Experimental investigation of a novel blast wave mitigation device. Shock and Vibration, 16, 543–553.

    Article  Google Scholar 

  29. Chen, Y., Huang, W., & Constantini, S. (2012). Blast shock wave mitigation using the hydraulic energy redirection and release technology. PLoS ONE, 7, e39353.

    Article  Google Scholar 

  30. Liu, L., & Hussein, M. I. (2012). Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. Journal of Applied Mechanics, 79, 011003.

    Article  Google Scholar 

  31. Collet, M., Ouisse, M., Ruzzene, M., et al. (2011). Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems. International Journal of Solids and Structures, 48, 2837–2848.

    Article  Google Scholar 

  32. Pinnington, R. J., & White, R. G. (1981). Power flow through machine isolators to resonant and non-resonant beams. Journal of Sound and Vibration, 75, 179–197.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research under No. AF 9550-15-1-0061 with Program Manager Dr. Byung-Lip (Les) Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Barnhart, M.V., Chen, Y.Y., Huang, G.L. (2018). Elastic Metamaterials for Blast Wave Impact Mitigation. In: Gopalakrishnan, S., Rajapakse, Y. (eds) Blast Mitigation Strategies in Marine Composite and Sandwich Structures. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7170-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7170-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7169-0

  • Online ISBN: 978-981-10-7170-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics