Skip to main content

Biomarkers of Uterine Fibroids

  • Chapter
  • First Online:
Uterine Fibroids and Adenomyosis

Abstract

Although uterine leiomyomas, or fibroids, are benign tumors, surgery has been the main mode of therapy for them. Because women who wish to retain the uterus for future pregnancies are increasing in number due to an increase in the average age of childbearing, therapy with molecular-targeted agents is desired. The development of effective agents requires a better understanding of the molecular mechanisms involved in the onset and development of leiomyomas. In addition, because uterine leiomyosarcomas, which, unlike leiomyomas, are malignant, occur in a similar location and have similar shapes, differentiating leiomyomas from leiomyosarcomas is needed to retain the uterus. Therefore, in this chapter, we focus on the pathological diagnostic markers that appear to be involved in the mechanisms of the onset and development of leiomyomas and the differential diagnostic markers to distinguish them from leiomyosarcomas. To identify the pathological diagnostic markers of leiomyomas, previous studies have used cytogenetic status, mRNA, microRNA and protein expression, and DNA methylation patterns. In recent years, genome-wide sequencing studies have associated leiomyomas most frequently with somatic mutations of the MED12 gene and less frequently with several other genomic alterations. To identify candidate markers for differential diagnosis, several studies have used microRNA expression, omics, and immunohistochemical analyses. Here, we outline the above findings and describe our recent application of leiomyoma-specific marker genes that have aberrant DNA methylation, to distinguish leiomyomas from leiomyosarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart EA. Uterine fibroids. Lancet. 2001;357:293–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bajekal N, Li TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update. 2000;6:614–20.

    Article  CAS  PubMed  Google Scholar 

  3. Gadducci A, Cosio S, Romanini A, Genazzani AR. The management of patients with uterine sarcoma: a debated clinical challenge. Crit Rev Oncol Hematol. 2008;65:129–42.

    Article  PubMed  Google Scholar 

  4. Lange SS, Novetsky AP, Powell MA. Recent advances in the treatment of sarcomas in gynecology. Discov Med. 2014;18:133–40.

    PubMed  Google Scholar 

  5. Roque DR, et al. Gemcitabine and docetaxel compared with observation, radiation, or other chemotherapy regimens as adjuvant treatment for stage I-to-IV uterine leiomyosarcoma. Int J Gynecol Cancer. 2016;26:505–11.

    Article  PubMed  Google Scholar 

  6. Foley OW, et al. Trends in the treatment of uterine leiomyosarcoma in the Medicare population. Int J Gynecol Cancer. 2015;25:453–8.

    Article  PubMed  Google Scholar 

  7. Reed NS, et al. Phase III randomised study to evaluate the role of adjuvant pelvic radiotherapy in the treatment of uterine sarcomas stages I and II: an European Organisation for Research and Treatment of Cancer Gynaecological Cancer Group Study. Eur J Cancer. 2008;44:808–18.

    Article  CAS  PubMed  Google Scholar 

  8. Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18:535–58.

    Article  CAS  PubMed  Google Scholar 

  9. Ly A, et al. Atypical leiomyomas of the uterus: a clinicopathologic study of 51 cases. Am J Surg Pathol. 2013;37:643–9.

    Article  PubMed  Google Scholar 

  10. Zhang Q, et al. Molecular analyses of 6 different types of uterine smooth muscle tumors: emphasis in atypical leiomyoma. Cancer. 2014;120:3165–77.

    Article  CAS  PubMed  Google Scholar 

  11. Fan D, Yi X. Pulmonary benign metastasizing leiomyoma: a case report. Int J Clin Exp Pathol. 2014;15:7072–5.

    Google Scholar 

  12. Tohya T, et al. Case of concurrent benign metastasizing leiomyoma in the lung and retroperitoneum, with a focus on its etiology. J Obstet Gynaecol Res. 2014;40:2010–3.

    Article  PubMed  Google Scholar 

  13. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  14. Canevari RA, Pontes A, Rosa FE, Rainho CA, Rogatto SR. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis. Am J Obstet Gynecol. 2005;193:1395–403.

    Article  PubMed  Google Scholar 

  15. Zhang P, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37:1350–6.

    Article  CAS  PubMed  Google Scholar 

  16. Makinen N, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.

    Article  CAS  PubMed  Google Scholar 

  17. Gross KL, Morton CC. Genetics and the development of fibroids. Clin Obstet Gynecol. 2001;44:335–49.

    Article  CAS  PubMed  Google Scholar 

  18. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158:1–26.

    Article  CAS  PubMed  Google Scholar 

  19. Tsibris JC, et al. Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002;78:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Skubitz KM, Skubitz AP. Differential gene expression in uterine leiomyoma. J Lab Clin Med. 2003;141:297–308.

    Article  CAS  PubMed  Google Scholar 

  21. Arslan AA, et al. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod. 2005;20:852–63.

    Article  CAS  PubMed  Google Scholar 

  22. Wang T, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46:336–47.

    Article  CAS  PubMed  Google Scholar 

  23. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771.

    Article  CAS  PubMed  Google Scholar 

  24. Lemeer S, Gholami AM, Wu Z, Kuster B. Quantitative proteome profiling of human myoma and myometrium tissue reveals kinase expression signatures with potential for therapeutic intervention. Proteomics. 2015;15:356–64.

    Article  CAS  PubMed  Google Scholar 

  25. Ura B, Scrimin F, Arrigoni G, Franchin C, Monasta L, Ricci G. A proteomic approach for the identification of up-regulated proteins involved in the metabolic process of the leiomyoma. Int J Mol Sci. 2016;17:540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maekawa R, et al. Disease-dependent differently methylated regions (D-DMRs) of DNA are enriched on the X chromosome in uterine leiomyoma. J Reprod Dev. 2011;57:604–12.

    Article  CAS  PubMed  Google Scholar 

  27. Maekawa R, et al. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One. 2013;8:e66632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sato S, et al. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev. 2014;7:47–54.

    Article  Google Scholar 

  29. Navarro A, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7:e33284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Croce S, Chibon F. MED12 and uterine smooth muscle oncogenesis: state of the art and perspectives. Eur J Cancer. 2015;51:1603–10.

    Article  CAS  PubMed  Google Scholar 

  31. McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7:e33251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halder SK, Laknaur A, Miller J, Layman LC, Diamond M, Al-Hendy A. Novel MED12 gene somatic mutations in women from the Southern United States with symptomatic uterine fibroids. Mol Gen Genomics. 2015;290:505–11.

    Article  CAS  Google Scholar 

  33. Kämpjärvi K, et al. Mutations in exon 1 highlight the role of MED12 in uterine leiomyomas. Hum Mutat. 2014;35:1136–41.

    Article  CAS  PubMed  Google Scholar 

  34. Yatsenko SA, et al. Highly heterogeneous genomic landscape of uterine leiomyomas by whole exome sequencing and genome-wide arrays. Fertil Steril. 2017;107:457–66.

    Article  CAS  PubMed  Google Scholar 

  35. Ravegnini G, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26:743–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kämpjärvi K, et al. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107:1761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim WK, et al. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma. Nat Genet. 2014;46:877–80.

    Article  CAS  PubMed  Google Scholar 

  38. Lehtonen R, et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol. 2004;164:17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehine M, Mäkinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril. 2014;102:621–9.

    Article  CAS  PubMed  Google Scholar 

  40. Mehine M, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369:43–53.

    Article  CAS  PubMed  Google Scholar 

  41. Mehine M, et al. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci U S A. 2016;113:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bertsch E, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27:1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet. 2005;161:1–19.

    Article  PubMed  Google Scholar 

  44. Mäkinen N, et al. Exome sequencing of uterine leiomyosarcomas identifies frequent mutations in TP53, ATRX, and MED12. PLoS Genet. 2016;12:e1005850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Danielson LS, et al. A differentiation-based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy. Am J Pathol. 2010;177:908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyata T, et al. Genomic, epigenomic, and transcriptomic profiling towards identifying omics features and specific biomarkers that distinguish uterine leiomyosarcoma and leiomyoma at molecular levels. Sarcoma. 2015;2015:412068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32:984–7.

    Article  CAS  PubMed  Google Scholar 

  48. Akhan SE, et al. The expression of Ki-67, p53, estrogen and progesterone receptors affecting survival in uterine leiomyosarcomas. A clinicopathologic study. Gynecol Oncol. 2005;99:36–42.

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi T, et al. Potential role of LMP2 as tumor-suppressor defines new targets for uterine leiomyosarcoma therapy. Sci Rep. 2011;1:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayashi T, et al. Potential role of LMP2 as an anti-oncogenic factor in human uterine leiomyosarcoma: morphological significance of calponin h1. FEBS Lett. 2012;586:1824–31.

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi T, et al. Potential diagnostic biomarkers: differential expression of LMP2/β1i and cyclin B1 in human uterine leiomyosarcoma. Tumori. 2014;100:99e–106e.

    Article  PubMed  Google Scholar 

  52. Hayashi T, Faustman DL. Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res. 2002;62:24–7.

    PubMed  CAS  Google Scholar 

  53. Hayashi T, et al. Mice-lacking LMP2, immuno-proteasome subunit, as an animal model of spontaneous uterine leiomyosarcoma. Protein Cell. 2010;1:711–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sato S, et al. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application. Sci Rep. 2016;6:30652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mittal P, et al. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015;3:3280–4.

    Article  Google Scholar 

  56. Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D, Dermody J, Toruner GA. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22:1303–11.

    Article  CAS  PubMed  Google Scholar 

  57. Christacos NC, Quade BJ, Dal Cin P, Morton CC. Uterine leiomyomata with deletions of Ip represent a distinct cytogenetic subgroup associated with unusual histologic features. Genes Chromosomes Cancer. 2006;45:304–12.

    Article  CAS  PubMed  Google Scholar 

  58. Yanai H, et al. Uterine leiomyosarcoma arising in leiomyoma: clinicopathological study of four cases and literature review. Pathol Int. 2010;60:506–9.

    Article  PubMed  Google Scholar 

  59. Shiota K, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells. 2002;7:961–9.

    Article  CAS  PubMed  Google Scholar 

  60. Yagi S, et al. DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res. 2008;18:1969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, S., Sugino, N. (2018). Biomarkers of Uterine Fibroids. In: Sugino, N. (eds) Uterine Fibroids and Adenomyosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7167-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7167-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7166-9

  • Online ISBN: 978-981-10-7167-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics