Stem Cells and Uterine Fibroids

  • Masanori Ono
  • Tetsuo Maruyama
  • Hiroshi Fujiwara
  • Serdar E. Bulun
Chapter
Part of the Comprehensive Gynecology and Obstetrics book series (CGO)

Abstract

Although little is known on the origin of leiomyoma tumorigenesis, increasing evidence supports the hypothesis that leiomyomas arise from a stem cell population in the uterus. Recent articles on stem cells and their paracrine interactions with more specialized cell populations within leiomyomas may help to establish the missing link between the development of treatments designed to stop the growth of leiomyomas and therapies devised to eliminate them. Studies to identify leiomyoma stem or progenitor cell markers might offer new possibilities for understanding the origin of these tumors and perhaps aid the development of noninvasive treatments. Adult (or somatic) stem cells constitute a subset of cells residing in normal tissues. By undergoing asymmetric division, they retain their ability to self-renew while producing daughter cells that go on to differentiate and play a role in tissue regeneration and repair. The unique properties of the uterus to enlarge and remodel suggest the existence of uterine stem cell systems. Neoplastic stem cells or tumor-initiating cells, a subset of cells within a tumor, have the ability to reconstitute tumors. Leiomyomas appear to be monoclonal tumors derived from a single myocyte. Work in recent years has identified, isolated, and characterized putative stem or progenitor cells in the myometrium and in leiomyomas. Here, we review the current literature on leiomyoma stem and progenitor cells and provide a new paradigm for understanding their pathology.

Keywords

Leiomyoma Myoma Stem cells Adult stem cells Neoplastic stem cells 

Notes

Conflict of Interest

The authors declare that no conflicts of interest exist.

References

  1. 1.
    Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–7.CrossRefGoogle Scholar
  2. 2.
    Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol. 1990;94(4):435–8.CrossRefGoogle Scholar
  3. 3.
    Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–55.CrossRefGoogle Scholar
  4. 4.
    Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308(5728):1589–92.CrossRefGoogle Scholar
  5. 5.
    Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 2007;87(4):725–36.CrossRefGoogle Scholar
  6. 6.
    Wallach EE, Vlahos NF. Uterine myomas: an overview of development, clinical features, and management. Obstet Gynecol. 2004;104(2):393–406.CrossRefGoogle Scholar
  7. 7.
    Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(4):571–88.CrossRefGoogle Scholar
  8. 8.
    Stewart EA. Uterine fibroids. Lancet. 2001;357(9252):293–8.CrossRefGoogle Scholar
  9. 9.
    Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15(4):259–67.CrossRefGoogle Scholar
  10. 10.
    Navarro A, Yin P, Monsivais D, Lin SM, Du P, Wei JJ, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7(3):e33284.CrossRefGoogle Scholar
  11. 11.
    Zavadil J, Ye H, Liu Z, Wu J, Lee P, Hernando E, et al. Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS One. 2010;5(8):e12362.CrossRefGoogle Scholar
  12. 12.
    Georgieva B, Milev I, Minkov I, Dimitrova I, Bradford AP, Baev V. Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics. 2012;99(5):275–81.CrossRefGoogle Scholar
  13. 13.
    Wei LH, Torng PL, Hsiao SM, Jeng YM, Chen MW, Chen CA. Histone deacetylase 6 regulates estrogen receptor alpha in uterine leiomyoma. Reprod Sci. 2011;18(8):755–62.CrossRefGoogle Scholar
  14. 14.
    Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771–6.CrossRefGoogle Scholar
  15. 15.
    Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30(4):406–10.CrossRefGoogle Scholar
  16. 16.
    Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.CrossRefGoogle Scholar
  17. 17.
    Markowski DN, Bartnitzke S, Loning T, Drieschner N, Helmke BM, Bullerdiek J. MED12 mutations in uterine fibroids—their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528–36.CrossRefGoogle Scholar
  18. 18.
    de Graaff MA, Cleton-Jansen AM, Szuhai K, Bovee JV. Mediator complex subunit 12 exon 2 mutation analysis in different subtypes of smooth muscle tumors confirms genetic heterogeneity. Hum Pathol. 2013;44(8):1597–604.CrossRefGoogle Scholar
  19. 19.
    Rieker RJ, Agaimy A, Moskalev EA, Hebele S, Hein A, Mehlhorn G, et al. Mutation status of the mediator complex subunit 12 (MED12) in uterine leiomyomas and concurrent/metachronous multifocal peritoneal smooth muscle nodules (leiomyomatosis peritonealis disseminata). Pathology. 2013;45(4):388–92.CrossRefGoogle Scholar
  20. 20.
    Je EM, Kim MR, Min KO, Yoo NJ, Lee SH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131(6):E1044–7.CrossRefGoogle Scholar
  21. 21.
    Matsubara A, Sekine S, Yoshida M, Yoshida A, Taniguchi H, Kushima R, et al. Prevalence of MED12 mutations in uterine and extrauterine smooth muscle tumours. Histopathology. 2013;62(4):657–61.CrossRefGoogle Scholar
  22. 22.
    McGuire MM, Yatsenko A, Hoffner L, Jones M, Surti U, Rajkovic A. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PLoS One. 2012;7(3):e33251.CrossRefGoogle Scholar
  23. 23.
    Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.CrossRefGoogle Scholar
  24. 24.
    Brosens I, Deprest J, Dal Cin P, Van den Berghe H. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril. 1998;69(2):232–5.CrossRefGoogle Scholar
  25. 25.
    Mehine M, Kaasinen E, Makinen N, Katainen R, Kampjarvi K, Pitkanen E, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53.CrossRefGoogle Scholar
  26. 26.
    Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction. 2010;140(1):11–22.CrossRefGoogle Scholar
  27. 27.
    Maruyama T. Stem/progenitor cells and the regeneration potentials in the human uterus. Reprod Med Biol. 2010;9:9–16.CrossRefGoogle Scholar
  28. 28.
    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.CrossRefGoogle Scholar
  29. 29.
    Canevari RA, Pontes A, Rosa FE, Rainho CA, Rogatto SR. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis. Am J Obstet Gynecol. 2005;193(4):1395–403.CrossRefGoogle Scholar
  30. 30.
    Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37(10):1350–6.CrossRefGoogle Scholar
  31. 31.
    Hodge JC, Park PJ, Dreyfuss JM, Assil-Kishawi I, Somasundaram P, Semere LG, et al. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer. 2009;48(10):865–85.CrossRefGoogle Scholar
  32. 32.
    Velagaleti GV, Tonk VS, Hakim NM, Wang X, Zhang H, Erickson-Johnson MR, et al. Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet. 2010;202(1):11–6.CrossRefGoogle Scholar
  33. 33.
    Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(3692):67–9.CrossRefGoogle Scholar
  34. 34.
    Mas A, Cervello I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, et al. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril. 2012;98(3):741–51.e6.CrossRefGoogle Scholar
  35. 35.
    Ono M, Qiang W, Serna VA, Yin P, Coon JS V, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7(5):e36935.CrossRefGoogle Scholar
  36. 36.
    Ono M, Yin P, Navarro A, Moravek MB, Coon JS V, Druschitz SA, et al. Paracrine activation of WNT/beta-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053–8.CrossRefGoogle Scholar
  37. 37.
    Maruyama T, Miyazaki K, Masuda H, Ono M, Uchida H, Yoshimura Y. Review: human uterine stem/progenitor cells: implications for uterine physiology and pathology. Placenta. 2013;34(Suppl):S68–72.CrossRefGoogle Scholar
  38. 38.
    Maruyama T, Ono M, Yoshimura Y. Somatic stem cells in the myometrium and in myomas. Semin Reprod Med. 2013;31(1):77–81.CrossRefGoogle Scholar
  39. 39.
    Chang HL, Senaratne TN, Zhang L, Szotek PP, Stewart E, Dombkowski D, et al. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17(2):158–67.CrossRefGoogle Scholar
  40. 40.
    Golebiewska A, Brons NH, Bjerkvig R, Niclou SP. Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell. 2011;8(2):136–47.CrossRefGoogle Scholar
  41. 41.
    Yin P, Ono M, Moravek MB, Coon JS V, Navarro A, Monsivais D, et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab. 2015;100(4):E601–6.CrossRefGoogle Scholar
  42. 42.
    Bulun SE, Moravek MB, Yin P, Ono M, Coon JS V, Dyson MT, et al. Uterine leiomyoma stem cells: linking progesterone to growth. Semin Reprod Med. 2015;33(5):357–65.CrossRefGoogle Scholar
  43. 43.
    Mas A, Nair S, Laknaur A, Simon C, Diamond MP, Al-Hendy A. Stro-1/CD44 as putative human myometrial and fibroid stem cell markers. Fertil Steril. 2015;104(1):225–34.e3.CrossRefGoogle Scholar
  44. 44.
    Mas A, Stone L, O'Connor PM, Yang Q, Kleven DT, Simon C, et al. Developmental exposure to endocrine disruptors expands murine myometrial stem cell compartment as a prerequisite to leiomyoma tumorigenesis. Stem Cells. 2016;35(3):666–78.CrossRefGoogle Scholar
  45. 45.
    Ono M, Yin P, Navarro A, Moravek MB, Coon VJ, Druschitz SA, et al. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil Steril. 2014;101(5):1441–9.CrossRefGoogle Scholar
  46. 46.
    Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod. 2014;91(6):149.CrossRefGoogle Scholar
  47. 47.
    Tanwar PS, Lee HJ, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, et al. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81(3):545–52.CrossRefGoogle Scholar
  48. 48.
    Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288(1):276–83.CrossRefGoogle Scholar
  49. 49.
    Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25(5):1317–25.CrossRefGoogle Scholar
  50. 50.
    Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–11.CrossRefGoogle Scholar
  51. 51.
    Moravek MB, Yin P, Ono M, Coon JS V, Dyson MT, Navarro A, et al. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Hum Reprod Update. 2015;21(1):1–12.CrossRefGoogle Scholar
  52. 52.
    Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, Hendricks P, et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene. 2013;32(20):2555–64.CrossRefGoogle Scholar
  53. 53.
    Qiang W, Liu Z, Serna VA, Druschitz SA, Liu Y, Espona-Fiedler M, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155(3):663–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Masanori Ono
    • 1
  • Tetsuo Maruyama
    • 2
  • Hiroshi Fujiwara
    • 1
  • Serdar E. Bulun
    • 3
  1. 1.Department of Obstetrics and GynecologyKanazawa University Graduate School of Medical SciencesKanazawaJapan
  2. 2.Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
  3. 3.Department of Obstetrics and GynecologyFeinberg School of Medicine at Northwestern UniversityChicagoUSA

Personalised recommendations