Skip to main content

Atomistic Simulation of Boron Nitride Nanotubes Under Bending

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advances in Computational Mechanics 2017 (ACOME 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1376 Accesses

Abstract

We investigate the bending buckling behavior of boron nitride (BN) nanotubes through molecular dynamics finite element method with Tersoff potential. Effects of the tube length on the critical bending buckling angle and moment are examined for (5, 5) BN armchair and (9, 0) BN zigzag tubes, which exhibit approximately identical diameters. The buckling and fracture mechanisms of the tubes under bending are considered and discussed with respect to various tube length–diameter ratios L/D = 10–40. Simulation results will help to design and use BN nanotube-based nanocomposites and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    Article  Google Scholar 

  2. Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R Rep 70(3):92–111

    Article  Google Scholar 

  3. Arenal R, Wang M-S, Xu Z, Loiseau A, Golberg D (2011) Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 22(26):265704

    Article  Google Scholar 

  4. Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84(13):2430–2432

    Article  Google Scholar 

  5. Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76(8):085407

    Article  Google Scholar 

  6. Guo G, Ishibashi S, Tamura T, Terakura K (2007) Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations. Phys Rev B 75(24):245403

    Article  Google Scholar 

  7. Chang C, Fennimore A, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A (2006) Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys Rev Lett 97(8):085901

    Article  Google Scholar 

  8. Attaccalite C, Wirtz L, Marini A, Rubio A (2013) Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible. Sci Rep 3

    Google Scholar 

  9. Li LH, Chen Y, Lin M-Y, Glushenkov AM, Cheng B-M, Yu J (2010) Single deep ultraviolet light emission from boron nitride nanotube film. Appl Phys Lett 97(14):141104

    Article  Google Scholar 

  10. Meng W, Huang Y, Fu Y, Wang Z, Zhi C (2014) Polymer composites of boron nitride nanotubes and nanosheets. J Mater Chem C 2(47):10049–10061

    Article  Google Scholar 

  11. Nautiyal P, Gupta A, Seal S, Boesl B, Agarwal A (2017) Reactive wetting and filling of boron nitride nanotubes by molten aluminum during equilibrium solidification. Acta Mater 126:124–131

    Article  Google Scholar 

  12. Kang JH, Sauti G, Park C, Yamakov VI, Wise KE, Lowther SE, Fay CC, Thibeault SA, Bryant RG (2015) Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 9(12):11942–11950

    Article  Google Scholar 

  13. Chandra A, Patra PK, Bhattacharya B (2016) Thermomechanical buckling of boron nitride nanotubes using molecular dynamics. Mater Res Express 3(2):025005

    Article  Google Scholar 

  14. Huang Y, Lin J, Zou J, Wang M-S, Faerstein K, Tang C, Bando Y, Golberg D (2013) Thin boron nitride nanotubes with exceptionally high strength and toughness. Nanoscale 5(11):4840–4846

    Article  Google Scholar 

  15. Li T, Tang Z, Huang Z, Yu J (2017) A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes. Physica E 85:137–142

    Article  Google Scholar 

  16. Kinoshita Y, Ohno N (2010) Electronic structures of boron nitride nanotubes subjected to tension, torsion, and flattening: a first-principles DFT study. Phys Rev B 82(8):085433

    Article  Google Scholar 

  17. Anoop Krishnan N, Ghosh D (2014) Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension. J Appl Phys 116(4):044313

    Google Scholar 

  18. Anoop Krishnan N, Ghosh D (2014) Chirality dependent elastic properties of single-walled boron nitride nanotubes under uniaxial and torsional loading. J Appl Phys 115(6):064303

    Google Scholar 

  19. Xiong Q-L, Tian XG (2015) Torsional properties of hexagonal boron nitride nanotubes, carbon nanotubes and their hybrid structures: a molecular dynamics study. AIP Adv 5(10):107215

    Article  Google Scholar 

  20. Garel J, Leven I, Zhi C, Nagapriya K, Popovitz-Biro R, Golberg D, Bando Y, Hod O, Joselevich E (2012) Ultrahigh torsional stiffness and strength of boron nitride nanotubes. Nano Lett 12(12):6347–6352

    Article  Google Scholar 

  21. Tanur AE, Wang J, Reddy AL, Lamont DN, Yap YK, Walker GC (2013) Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes. J Phys Chem B 117(16):4618–4625

    Article  Google Scholar 

  22. Zhang J (2016) Size-dependent bending modulus of nanotubes induced by the imperfect boundary conditions. Sci Rep 6

    Google Scholar 

  23. Hollerer S (2014) Numerical validation of a concurrent atomistic-continuum multiscale method and its application to the buckling analysis of carbon nanotubes. Comput Methods Appl Mech Eng 270:220–246

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang C, Liu Y, Al-Ghalith J, Dumitrică T, Wadee MK, Tan H (2016) Buckling behavior of carbon nanotubes under bending: from ripple to kink. Carbon 102:224–235

    Article  Google Scholar 

  25. Tersoff J (1989) Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566

    Article  Google Scholar 

  26. Sevik C, Kinaci A, Haskins JB, Çağın T (2011) Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys Rev B 84(8):085409

    Article  Google Scholar 

  27. Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) The atomic-scale finite element method. Comput Methods Appl Mech Eng 193:1849–1864

    Article  MATH  Google Scholar 

  28. Wackerfuß J (2009) Molecular mechanics in the context of the finite element method. Int J Numer Meth Eng 77:969–997

    Article  MathSciNet  MATH  Google Scholar 

  29. Le MQ, Nguyen DT (2014) Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater Sci Eng, A 615(2014):481–488

    Article  Google Scholar 

  30. Le M-Q (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11(6):1458–1464

    Article  Google Scholar 

Download references

Acknowledgements

Danh-Truong Nguyen’s work was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.02-2016.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Le-Minh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen-Van, T., Nguyen-Danh, T., Le-Minh, Q. (2018). Atomistic Simulation of Boron Nitride Nanotubes Under Bending. In: Nguyen-Xuan, H., Phung-Van, P., Rabczuk, T. (eds) Proceedings of the International Conference on Advances in Computational Mechanics 2017. ACOME 2017. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-7149-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7149-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7148-5

  • Online ISBN: 978-981-10-7149-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics