Advertisement

Stress-Tolerant Beneficial Microbes for Sustainable Agricultural Production

  • Reeta Goel
  • Deep Chandra Suyal
  • Vinay Kumar
  • Lata Jain
  • Ravindra SoniEmail author
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 7)

Abstract

Agriculture sector is a major contributor of national income in India, while ensuring food security and employment. Plant exposure to both biotic and abiotic stresses causes major losses to agricultural production worldwide. Biotic factors mainly include interaction with other pathogenic or parasitic microorganisms and insect pests, whereas abiotic factors include temperature, drought, water logging, and salinity. Microorganisms play an important role in the growth and development of plants. They confer several benefits to the plants and help them to alleviate the stress.

Keywords

Stress Bacteria Plant 

References

  1. Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350CrossRefGoogle Scholar
  2. Ali SKZ, Sandhya V, Grover M, Kishore N, Venkateswar Rao L, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:4555CrossRefGoogle Scholar
  3. Ali SKZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermo tolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6(4):239–246CrossRefGoogle Scholar
  4. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015a) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali S, Ehetshamul-Haque S, Shahid Shaukat S (2001) Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J Phytopathol 149(6):337–346Google Scholar
  6. Ali Z, Ullah N, Naseem S, Inam-Ulhuaq M, Jacobsen HJ (2015b) Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter. Turk J Bot 39:962–972CrossRefGoogle Scholar
  7. Allen TD, Eby LT, Poteet ML, Lentz E, Lima L (2004) Career benefits associated with mentoring for proteges: a meta-analysis. J Appl Psychol 89(1):127–136Google Scholar
  8. Arkhipova T, Prinsen E, Veselov S, Martinenko E, Melentiev A, Kudoyarova G (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315.  https://doi.org/10.1007/s11104-007-9233 CrossRefGoogle Scholar
  9. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620CrossRefGoogle Scholar
  10. Augé RM, Stodola AJW, Tims JE, Saxton AM (2001) Plant Soil 230(1):87–97Google Scholar
  11. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  12. Barriuso J, Solano BR, Gutierrez Manero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672.  https://doi.org/10.1094/PHYTO-98-6-0666 PubMedCrossRefGoogle Scholar
  13. Bergottini VM, Otegui MB, Sosa DA, Zapata PD, Mulot M, Rebord M, Junier P (2015) Bio-inoculation of yerba mate seedlings (Ilex paraguariensis St. Hill.) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield. Biol Fertil Soils 51(6):749–755CrossRefGoogle Scholar
  14. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern- recognition receptors. Annu Rev Plant Biol 60(1):379–406Google Scholar
  15. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130CrossRefGoogle Scholar
  16. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought- from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  17. Chen M et al (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403PubMedGoogle Scholar
  18. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Chang 81:7–30.  https://doi.org/10.1007/s10584-006- 9210-7 CrossRefGoogle Scholar
  19. Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry A-A, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511PubMedCrossRefGoogle Scholar
  20. Corretto E, Antonielli L, Sessitsch A, Compant S, Höfer C, Puschenreiter M, Brader G (2017) Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33T and comparison with related Actinobacteria. Stand Gen Sci.  https://doi.org/10.1186/s40793-016-0217-z
  21. Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:228–273CrossRefGoogle Scholar
  22. Dar GH, Beig MA, Ahanger FA, Ganai NA, Ashraf Ahangar M (2011) Management of root rot caused by Rhizoctonia solani and Fusarium oxysporum in blue pine (Pinus wallichiana) through use of fungal antagonists. Asian J Plant Pathol 5:6274 CrossRefGoogle Scholar
  23. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefGoogle Scholar
  24. Dhawia F, Dattaa R, Ramakrishna W (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41CrossRefGoogle Scholar
  25. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42(1):185–209Google Scholar
  26. Dutta S, Mishra AK, Kuma BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  27. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 756120:18Google Scholar
  28. Emerson R, Hoover A, Ray A, Lacey J, Cortez M, Payne C et al (2014) Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5(3):275–291CrossRefGoogle Scholar
  29. Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799PubMedCrossRefGoogle Scholar
  30. Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gahan LJ, Pauchet Y, Vogel H, Heckel DG, Mauricio R (2010) An ABC transporter mutation is correlated with insect resistance to bacillus thuringiensis Cry1Ac Toxin. PLoS Genet 6(12):e1001248Google Scholar
  32. Ghabrial SA, Nibert ML (2009) Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch Virol 154:373–379Google Scholar
  33. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications, Scientifica, vol. 2012, Article ID 963401, 1–15Google Scholar
  34. Glick BR et al (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  35. Grennan AK (2008) Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146(4):1457–1458PubMedPubMedCentralCrossRefGoogle Scholar
  36. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  37. Gupta CP, Dubey RC, Maheshwari DK (2002) Plant growth causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertl Soil 35:295–301Google Scholar
  38. Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160(4):385–388PubMedCrossRefGoogle Scholar
  39. Habib SH, Kausar H, Md Saud H (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 6284547:10Google Scholar
  40. Haggag WM (2002) Sustainable agriculture management of plant diseases. J Biol Sci 2:280–284CrossRefGoogle Scholar
  41. Ham JH, Groth D (2011) Bacterial panicle blight, an emerging rice disease. Louisiana Agric 2011:16–17Google Scholar
  42. Han Q-Q, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525PubMedPubMedCentralGoogle Scholar
  43. Hasiów-Jaroszewska B, Minicka J, Pospieszny H (2014) Cross-protection between different Pathotypes of Pepino mosaic virus representing Chilean 2 genotype. Acta Sci Pol, Hortorum Cultus 13(5):177–185Google Scholar
  44. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565PubMedCrossRefGoogle Scholar
  45. Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestation in New York. Crop Prot 27:996–1002CrossRefGoogle Scholar
  46. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657PubMedCrossRefGoogle Scholar
  47. Hirsch AM (2010) How rhizobia survive in the absence of a legume host, a stressful world indeed. In: Symbiosis and stress: joint ventures in biology (Eds.) J. Seckbach, M. Grube. cellular origin, life in extreme habitats and astrobiology. 17(4):375–391Dordrecht: SpringerCrossRefGoogle Scholar
  48. Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant toxicology. Marcel Dekker Inc., New York, pp 91–224Google Scholar
  49. Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84CrossRefGoogle Scholar
  50. Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Severson TF, Kang K, Hammock BD (2001) Recombinant baculoviruses for insect control. Pest Manag Sci 57:981–987PubMedCrossRefGoogle Scholar
  51. Ings J, Mur LAJ, Robson PRH, Bosch M (2013) Physiological and growth responses to water deficit in the bioenergy crop Miscanthus x giganteus. Front Plant Sci 4:468PubMedPubMedCentralCrossRefGoogle Scholar
  52. Islam F, Yasmeen T, Arif MS, Ali S, BAli HS, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36CrossRefGoogle Scholar
  53. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  54. Jehle JA, Schulze-Bopp S, Undorf-Spahn K, Fritsch E (2017) Evidence for a second type of resistance against cydia pomonella granulovirus in field populations of codling moths. Appl Environ Microbiol 83(2):e02330PubMedCrossRefGoogle Scholar
  55. Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43(6):510–515PubMedGoogle Scholar
  56. Karlidag H, Esitken A, Yildirim EMF, Turan MD (2011) Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J Plant Nutr 34:34–45CrossRefGoogle Scholar
  57. Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130CrossRefGoogle Scholar
  58. Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:1–6Google Scholar
  59. Khan M, Goel R (2014) Expression, purification and in silico studies of cold resistant protein from plant growth promoting Ps fluorescens mutant CRPF1. Curr Biotechnol 3(3):266–272. https://doi.org/10.2174/ 221155010303140918120113
  60. Kokalis-Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266CrossRefGoogle Scholar
  61. Kosaka Y, Ryang B-S, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006) Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90:67–72CrossRefGoogle Scholar
  62. Kumar GP, Mir Hassan Ahmed SK, Desai S, Leo Daniel Amalraj E, Rasul A (2014) In Vitro screening for sbioticd tress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:195946Google Scholar
  63. Lamsal K, Kim SW, Kim YS, Lee YS (2012) Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by on pepper. Mycobiology 40(4):244Google Scholar
  64. Lee G-W, Kim M-J, Park J-S, Chae J-C, Soh B-Y, Jae-Eun J, Lee K-J (2011) Biological control of phytophthora blight and anthracnose disease in red-pepper using bacillus subtilis S54. Res Plant Dis 17(1):86–89Google Scholar
  65. Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9:190PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li Y, Pang HD, He LY, Wang Q, Sheng XF (2017) Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicol Environ Saf 138:56–63PubMedCrossRefGoogle Scholar
  67. Lim J-H, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheni formis K11 in pepper. Plant Pathol J 29(2):201–208PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56(3):221–230PubMedCrossRefGoogle Scholar
  69. Lucas GJA, Probanza A, Ramos B, Palomino MR, Gutierrez Mañero FJ (2004) Effect of inoculation of Bacillus licheniformis ontomato and pepper. Agronomie 24:169–176CrossRefGoogle Scholar
  70. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1- carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278Google Scholar
  71. Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198PubMedPubMedCentralCrossRefGoogle Scholar
  72. Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. AJCS 8(2):208–214Google Scholar
  73. Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481PubMedCrossRefGoogle Scholar
  74. Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552PubMedCrossRefGoogle Scholar
  75. Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124CrossRefGoogle Scholar
  76. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  77. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572.  https://doi.org/10.1016/j.plaphy.2004.05.009 PubMedCrossRefGoogle Scholar
  78. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663PubMedCrossRefGoogle Scholar
  79. Mohanty M, Patra HK (2013) Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. var k-851) during seedling growth. J Stress Physiol Biochem 9(2):232–241Google Scholar
  80. Murphy JF, Zender GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784CrossRefGoogle Scholar
  81. Nag NK (2015) Selection of stress tolerant effective azotobacter isolates for climatic conditions of Chhattisgarh. M.Sc. (Ag) thesis submitted in Indiragandhi Krishi Vishwavidyalaya RaipurGoogle Scholar
  82. Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE, Clark CA et al (2009) Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis 93(9):896–905CrossRefGoogle Scholar
  83. Nehra K, Yadav AS, Sehrawat AR, Vashishat RK (2007) Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian J Microbiol 47:329–335PubMedCrossRefGoogle Scholar
  84. Nichols VA, Miguez FE, Jarchow ME, Liebman MZ, Dien BS (2014) Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy. Bioenergy Res 7(4):1550–1560CrossRefGoogle Scholar
  85. Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by ralstonia solanacearum. Microbes Environ 30(1):1–11Google Scholar
  86. Ogai R, Kanda-Hojo A, Tsuda S (2013) An attenuated isolate of Pepper mild mottle virus for cross protection of cultivated green pepper (Capsicum annuum L.) carrying the L3 resistance gene. Crop Prot 54:29–34CrossRefGoogle Scholar
  87. Omar AM, AhmedI. S. Ahmed (2014) Antagonistic and inhibitory effect of some plant rhizo-bacteria against different fusarium isolates on salvia officinalis. Am Eurasian J Agric Environ Sci 14(12):1437–1446Google Scholar
  88. Ozaktan H, Erdal M, Akkopru A, Aslan E (2012) Biological control of bacterial blight of walnut by antagonistic bacteria. J Plant Pathol 94(1, Supplement):S1.53–S1.56Google Scholar
  89. Okazaki Y, Ishihara A, Nishioka T, Iwamura H (2004) Identification of a dehydrodimer of avenanthramide phytoalexin in oats. Tetrahedron 60(22):4765–4771Google Scholar
  90. Pal KP, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr.  https://doi.org/10.1094/PHI-2006-117-02
  91. Pan XD, Wu PG, Jiang XJ (2016) Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci Rep 6:20317PubMedPubMedCentralCrossRefGoogle Scholar
  92. Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria which induces systemic resistance in tobacco against Pseudomonas syringae pv. Tabaco Biol Cont 18:2–9CrossRefGoogle Scholar
  93. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–384.  https://doi.org/10.1002/jobm. 200700365 PubMedCrossRefGoogle Scholar
  94. Pereyra MA, García P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97CrossRefGoogle Scholar
  95. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375Google Scholar
  96. Pirhadi M, Enayatizamir N, Motamedi H, Sorkheh K (2016) Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Biosci Biotech Res Comm 9(3):530–538Google Scholar
  97. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitat. SpringerPlus 2:6PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot 37:35–41CrossRefGoogle Scholar
  99. Rani A, Goel R (2009) Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 85–104Google Scholar
  100. Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78Google Scholar
  101. Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of pseudomonas putida 710A and commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928Google Scholar
  102. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  103. Rincon A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28(11):1693–1701Google Scholar
  104. Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen. Annu Rev Phytopathol 43(1):395–436Google Scholar
  105. Ron EZ, Segal G, Sirkis R, Robinson M, Graur D (2000) Regulation of heat-shock response in bacteria. Microbial biosystems: new frontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th international symposium on microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, CanadaGoogle Scholar
  106. Ruiz-Lozano JM, Aroca R (2010) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (eds) Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 359–374Google Scholar
  107. Ryu CM, Farag MA, CH H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabi-dopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sadik S, Mazouz H, Bouaichi A, Benbouazza A, Achbani EH (2013) Biological control of bacterial onion diseases using a bacterium, Pantoea Agglomerans 2066-7. Int J Sci Res (IJSR) 4(1):2319–7064Google Scholar
  109. Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biom Res 1(4):421–431Google Scholar
  110. Saluja B, Gupta A, Goel R (2011) Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and ground water sources of India. Ekologija 57(41):55–161Google Scholar
  111. Saluja B, Tripathi M, Goel R (2012) Molecular and functional characterization of cadmium resistant Proteus vulgaris strain KNP3 to unravel its resistance mechanistic. Chem Ecol 8(1):17–23CrossRefGoogle Scholar
  112. Santiagoa TR, Grabowskib C, Rossatoa M, Romeiroa RS, Mizubuti ESG (2015) Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control 80:14–22CrossRefGoogle Scholar
  113. Sapsirisopa S, Chookietwattana K, Maneewan K, Khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As J Food Ag-Ind, special issue S69–S74Google Scholar
  114. Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Venugopalan R, Gupta HS (2013) Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. Ann Microbiol 63(4):1353–1362CrossRefGoogle Scholar
  115. Serrano R, Rodríguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404PubMedCrossRefGoogle Scholar
  116. Shahriari F, Khodakaramian G, Heydari A (2005) Assessment of antagonistic activity of Pseudomonas fluorescens biovars toward Pectobacterium carotovorum subsp. atrosepticum. J Sci Technol Agric Nat Resour 8:201–211Google Scholar
  117. Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B (2015) Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio 6(5):e00621-15.  https://doi.org/10.1128/mBio.00621-15 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901Google Scholar
  119. Shi H, Quintero FJ, Prado JM, Zhu JK (2002) The putative plasma membrane Na+-H+ antiporter SOS1 controls longdistance Na+ transport in plants. Plant Cell 14:465–477PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH (2016) Biological control activities of rice-associated bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS One 11(1):e0146764PubMedPubMedCentralCrossRefGoogle Scholar
  121. Siddiqui KS, Cavicchioli R (2006) Cold-Adapted Enzymes. Annu Rev Biochem 75(1):403–433Google Scholar
  122. Singh A, Grover A (2008) Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants 14(1-2):155–166Google Scholar
  123. Singh AV, Chandra R, Goel R (2013) Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Arch Agron Soil Sci 59(5):641–651CrossRefGoogle Scholar
  124. Sinha S, Singh D, Yadav DK, Upadhyay BK (2012) Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstoniasolanacearum race 1 biovar 3. Indian Phytopathol 65(1):18–24Google Scholar
  125. Soni R, Saluja B, Goel R (2010) Bacterial community analysis using temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA PCR products of soil metagenome. Ekologija 56(3–4):94–98; Saluja B, Gupta A, Goel R (2011) Mechanism of arsenic resistance prevalent in Bacillus species isolated from soil and ground water sources of India. Ekologija 57(4):155–161Google Scholar
  126. Soni R, Suyal DC, Agrawal K, Yadav A, Souche Y, Goel R (2015) Differential proteomic analysis of Himalayan psychrotolerant diazotroph Pseudomonas palleroniana N26 strain under low temperature diazotrophic conditions. CryoLetters 36:74–82Google Scholar
  127. Suárez R, Wong A, Ramírez M, Barraza A, Orozco M d C, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21(7):958–966PubMedCrossRefGoogle Scholar
  128. Sunarpi HT, Motoda J, Kubo M et al (2005) Enhanced salt tolerance mediated byAtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938PubMedCrossRefGoogle Scholar
  129. Suprapta DN (2012) Potential of Microbial antagonists as biocontrol agents against plant fungal pathogens. J ISSAAS 18(2):1–8Google Scholar
  130. Suyal DC, Shukla A, Goel R (2014a) Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against Native Vigna radiata (L.) Wilczek. 3Biotech 4:665–668.  https://doi.org/10.1007/s13205-014-0259-0 Google Scholar
  131. Suyal DC, Yadav A, Shouche Y, Goel R (2014b) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550.  https://doi.org/10.1007/s00284-013-0508-1 PubMedCrossRefGoogle Scholar
  132. Suyal DC, Yadav A, Shouche Y, Goel R (2015a) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313.  https://doi.org/10.1515/biolog-2015-0048 CrossRefGoogle Scholar
  133. Suyal DC, Yadav A, Shouche Y, Goel R (2015b) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.) 3Biotech 5:433–441.  https://doi.org/10.1007/s13205-014-0238-5 Google Scholar
  134. Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97PubMedCrossRefGoogle Scholar
  135. Taj ZZ, Rajkumar M (2016) Perspectives of plant growth-promoting actinomycetes in heavy metal phytoremediation. In: Subramaniam G, Arumugam S, Rajendran V (eds) Plant growth promoting actinobacteria. Springer, Singapore, pp 213–231Google Scholar
  136. terHorst CP, Lennon JT, Lau JA (2014) The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc R Soc B 281:20140028PubMedPubMedCentralCrossRefGoogle Scholar
  137. Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Elna S¨m, lo Niinemets Ü (2014) drought-tolerance of wheat Improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant pseudomonas putida KNP9. Curr Microbiol 50(5):233–237Google Scholar
  139. Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56(2):140–144Google Scholar
  140. Turnera BL, Driessena JP, Haygarthb PM, Mckelvi ID (2003) Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189Google Scholar
  141. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacvteria isolated from rhizosphere soil of wheat under saline condition. Curr Microbiol 59:489–496PubMedCrossRefGoogle Scholar
  142. Upadhyay SK, Maurya SK, Singh DP (2012) Salinity tolerance in free living plant growth promoting Rhizobacteria. Ind J Sci Res 3(2):73–78Google Scholar
  143. Vaishnav A, Kumari S, Jain S, Choudhary DK, Sharma KP (2016) Molecular characterization of potential salt tolerant bacteria for soybean growth promotion. Int J Bioassays 5(12):5118–5123CrossRefGoogle Scholar
  144. van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607Google Scholar
  145. Vander Weijde T, Huxley LM, Hawkins S, Sembiring EH, Farrar K, Dolstra O et al (2016) Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy.  https://doi.org/10.1111/gcbb.12382
  146. Vardharajula S, Zulfikar Ali S, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14.  https://doi.org/10.1080/17429145.2010.535178 CrossRefGoogle Scholar
  147. Velusamy P, Immanue JE, Gnanamanickam SS (2013) Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Sci 20(5):356–362CrossRefGoogle Scholar
  148. Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainino L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258CrossRefGoogle Scholar
  149. Vidhyasekaran P (2002) Bacterial disease resistance in plants. Molecular biology and biotechnological applications. The Haworth Press, Binghamton. 452 ppGoogle Scholar
  150. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  151. Wachowska U, Majchrzak B, Borawska M, Karpinska Z (2004) Biological control of winter wheat pathogens by bacteria. Acta fytotech zootech 7, 2004, special number. In: Proceedings of the XVI. Slovak and Czech plant protection conference organized at Slovak Agricultural University in Nitra, SlovakiaGoogle Scholar
  152. Wafaa MHW, Hussein MM, Mehanna HM, El-Moneim D (2014) Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int J Pharm Sci Rev Res 29(2):292–298Google Scholar
  153. Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512Google Scholar
  154. Wolter A, Schroeder F-G (2012) Effect of drought stress on the productivity of ivy treated with rhizobacterium Bacillus subtilis. In: Proceedings of the international symposium on soilless cultivation 1004, Shanghai, pp 107–113Google Scholar
  155. Wu SJ, Lei D, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627Google Scholar
  156. Wu QS, Xi RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three Arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128CrossRefGoogle Scholar
  157. Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921.  https://doi.org/10.1111/j.1469-8137.2008.02627 PubMedCrossRefGoogle Scholar
  158. Xue Q-Y, Chen Y, Li S-M, Chen L-F, Ding G-C, Guo D-W, Guo J-H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258CrossRefGoogle Scholar
  159. Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11(7):e0159007.  https://doi.org/10.1371/journal.pone.0159007 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yoo JH, Park IC, Kim WG (2012) Biocontrol of Anthracnose of Chili Pepper by Bacillus sp. NAAS-1. Kor J Mycol 40(4):277–281Google Scholar
  161. Zahedi H, Samira A (2015) Effect of plant growth promoting rhizobacteria (PGPR) and water stress on phytohormones and polyamines of soybean. Indian J Agric Res 49(5):427–431Google Scholar
  162. Zampieri BDB, Pinto AB, Schultz L, de Oliveira MA, de Oliveira AJFC (2016) Diversity and distribution of heavy metal-resistant bacteria in polluted sediments of the araca bay, sao sebastiao (sp), and the relationship between heavy metals and organic matter concentrations. Microb Ecol 72:582CrossRefGoogle Scholar
  163. Zhang H, Sun Y, Xie X, Kim M-S, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577Google Scholar
  164. Zhou C, Zhou Y (2012) Strategies for viral cross protection in plants. Methods Mol Biol 894:69–81PubMedCrossRefGoogle Scholar
  165. Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve Plant growth and drought resistance. Int J Mol Sci 17:976Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Reeta Goel
    • 1
  • Deep Chandra Suyal
    • 1
  • Vinay Kumar
    • 2
  • Lata Jain
    • 2
  • Ravindra Soni
    • 3
    Email author
  1. 1.Department of Microbiology, CBSHG.B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.ICAR-National Institute of Biotic Stress ManagementRaipurIndia
  3. 3.Department of Agricultural Microbiology, College of AgricultureIndira Gandhi Krishi VishvaVidyalayaRaipurIndia

Personalised recommendations