Skip to main content

Azotobacter salinestris: A Novel Pesticide-Degrading and Prominent Biocontrol PGPR Bacteria

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 7))

Abstract

The species Azotobacter belongs to plant growth-promoting rhizobacteria (PGPR) group and are ubiquitous, aerobic, free-living and nitrogen (N2)-fixing bacteria commonly living in soil, water and sediments. Being the major group of soilborne bacteria, Azotobacter plays different beneficial roles by producing different types of secondary metabolites in the soil such as vitamins, amino acids, plant growth hormones, antifungal substances, hydrogen cyanide and siderophores. These secondary metabolites have direct influence on growth of shoot, root and seed germination of many agriculture crops. Among different species, Azotobacter salinestris is considered as efficient in N2 fixation (29.21 μg Nm/L/day), production of indole acetic acid (24.50 μg/mL), gibberellic acid (GA) (15.2 μg/25 mL) and phosphate-solubilizing activity (13.4 mm). Molecular and biochemical studies confirmed the identity of the isolates (A. salinestris KF470807). A. salinestris found tolerant to a highest NaCl concentration (6–8%), to maximum temperature (45 °C) and also to varied pH ranges (8–9). The isolate was tested for pesticide resistance and biodegradation studies and showed 100% biodegradation of pendimethalin and did not recorded pendimethalin residues. It was also studied for antifungal efficacy against phytopathogen Fusarium species and influence on growth parameters of cereals. A. salinestris helps to replace chemical fertilizer and restore the soil fertility and crop productivity for the sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolated of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free living rhizospheric bacteria for their multiple growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Aiyaz M, Divakara ST, Nayaka SC (2015) Application of beneficial rhizospheric microbes for the mitigation of seed borne mycotoxigenic fungal infection and mycotoxins in maize. Biocontrol Sci Tech 25:1105–1119

    Article  Google Scholar 

  • Akhter MS, Hossain SJ, Hossain SKA, Datta RKD (2012) Isolation and characterization of salinity tolerant Azotobacter sp. Greener J Biol Sci 2(3):43–51

    Article  Google Scholar 

  • Aleem A, Isar J, Malik A (2003) Impact of long term application of industrial wastewater on the emergence of resistance traits of Azotobacter vinelandii isolated from rhizosphere soil. Bioresource Tech 86:7–13

    Article  CAS  Google Scholar 

  • Almon L (1958) The vitamin B12 content of Azotobacter vinelandii. J Nutr 65(4):643–648

    Article  CAS  PubMed  Google Scholar 

  • Aquilanti L, Favilli F, Clementi F (2004) Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biol Biochem 36:1475–1483

    Article  CAS  Google Scholar 

  • Ayala S, Prakasa Rao EVS (2002) Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Barrera DA, Soto E (2010) Biotechnological uses of Azotobacter vinelandii current state limits and prospects. Afr J Biotechnol 9:5240–5250

    Google Scholar 

  • Becking JH (1981) The family Azotobacteraceae. In: Ballows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The procaryotes: a handbook on habitats, isolation and identification of bacteria. Springer, Heidelberg, pp 795–817

    Chapter  Google Scholar 

  • Bhosale HJ, Kadam TA, Bobade AR (2013) Identification and production of Azotobacter vinelandii and its antifungal activity against Fusarium oxysporum. J Environ Biol 34:177–182

    CAS  PubMed  Google Scholar 

  • Bottalico A (1998) Fusarium diseases of cereals: species complex and related mycotoxin profiles in Europe. J Plant Pathol 80(2):85–103

    CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:101–102

    Google Scholar 

  • Castillo JM, Casas J, Romero E (2011) Isolation of an endosulfan- degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Sci Total Environ 412–413:20–27

    Article  PubMed  Google Scholar 

  • Cavaglieri LR, Andres L, Ibanez M, Etcheverry MG (2005) Rhizobacteria and their potential to control Fusarium verticillioidies, effect of maize bacterisation and inoculums density. Antonie Van Leeuwenhoek 87:179–187

    Article  CAS  PubMed  Google Scholar 

  • Chennappa G, Adkar-Purushothama CR, Suraj U, Tamilvendan K, Sreenivasa MY (2013) Pesticide tolerant Azotobacter isolates from paddy growing areas of northern Karnataka, India. World J Microbiol Biotechnol 30:1–7

    Article  PubMed  Google Scholar 

  • Chennappa G, Purushothama ACR, Naik MK, Sreenivasa MY (2014) Impact of pesticides on PGPR activity of Azotobacter Sp. isolated from pesticide flooded paddy soils. Greener J Biol Sci 4(4):117–129

    Google Scholar 

  • Chennappa G, Naik MK, Adkar-Purushothama CR, Amaresh YS, Sreenivasa MY (2016) PGPR, abiotic stress tolerant and antifungal activity of Azotobacter sp. Isolated from paddy soils. Indian J Exp Biol 54:322–331

    CAS  PubMed  Google Scholar 

  • Elsyaed BB, Nady MF (2013) bioremediation of pendimethalin contaminated soil. Afr J Microbiol Res 7(21):2574–2588

    Article  Google Scholar 

  • Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg SK, Bhatnagar A, Kalla A, Narula N (2001) In vitro nitrogen fixation, phosphate solubilization, survival and nutrient release by Azotobacter strains in an aquatic system. Bioresource Tech 80:101–109

    Article  CAS  Google Scholar 

  • Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biotech Biochem 6:871–876

    Google Scholar 

  • Jimenez DJ, Montana JS, Martinez MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable grown Colombian soils. Braz J Microbiol 42:846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89

    CAS  PubMed  Google Scholar 

  • Joshi KK, Kumar V, Dubey RC, Maheshwari DK (2006) Effect of chemical fertilizer adaptive variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1 on Macrophomena phaseolina causing charcoal rot of Brassica juncea. Korean J Environ Agric 25:228–235

    Article  Google Scholar 

  • Kadam TA, Gangawane LV (2005) Degradation of phorate by Azotobacter isolates. Indian J Biotechnol 4:153–155

    CAS  Google Scholar 

  • Kannapiran E, Ramkumar SV (2011) Inoculation effect of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth of black gram (Phaseolusmungo Roxb; Eng). Annals Biol Res 2(5):615–621

    CAS  Google Scholar 

  • Khan HR, Mohiuddin M, Rahman M (2008) Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J Fac Environ Sci Tech 13:97–101

    CAS  Google Scholar 

  • Kraepiel A, Bellenger J, Wichard T, Morel F (2009) Multiple roles of siderophores in free living nitrogen-fixing bacteria. Biometals 22:573–581

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Behl RK, Narula N (2000) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  Google Scholar 

  • Lopez JG, Toledo MV, Reina S, Salmeron V (1981) Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum chemically defined media and dialysed soil media. Toxicol Environ Chem 33:69–78

    Article  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiolo Plant 1(2):142–146

    Google Scholar 

  • Mali GV, Bodhankar MG (2009) Antifungal and phytohormone potential of Azotobacter chroococcum isolates from ground nut (Arachis hypogea L.) rhizosphere. Asian J Exp Sci 23:293–297

    CAS  Google Scholar 

  • Martin XM, Sumathi CS, Kannan VR (2011) Influence of agrochemical and Azotobacter spp. application on soil fertility in relation to maize growth under nursery conditions. Eurasia J Biosci 5:19–28

    Article  Google Scholar 

  • Megadi VB, Tallur PN, Hoskeri RS, Mulla SI, Ninnekar HZ (2010) Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–177

    CAS  Google Scholar 

  • Mirzakhani M, Ardakani MR, Band AA, Rejali F, Rad SAH (2009) Response of spring safflower to co-inoculation with Azotobacter chroococcum and Glomus intraradices under different levels of nitrogen and phosphorus. Am J Agri Biol Sci 4:255–261

    Article  Google Scholar 

  • Mollmann U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the Trojan horse strategy. Biometals 22:615–624

    Article  PubMed  Google Scholar 

  • Moneke AN, Okpala GN, Anyanwu CU (2010) Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol 9:4067–4074

    CAS  Google Scholar 

  • Moreno J, Lopez JG, Vela GR (1986) Survival of Azotobacter spp in dry soils. Appl Environ Microbiol 51:123–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrkovacki NB, Nikola A, Cacic, Milic VM (2002) Effects of Pesticides on Azotobacter chroococcum. Proc Nat Sci 102:23–28

    CAS  Google Scholar 

  • Murcia R, Rodelas B, Salmeron V, Toledo MVM, Lopez GJ (1997) Effects of herbicide simazine on vitamin production by Azotobacter chroococcum and Azotobacter vinelandii. Appl Soil Ecol 6:187–193

    Article  Google Scholar 

  • Myresiotis CK, Vryzas Z, Mourkidou EP (2012) Biodegradation of soil applied pesticides by selected strains of plant growth promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja H, Chennappa G, Rakesh S, Naik MK, Amaresh YS, Sreenivasa MY (2016) Anti fusarial activity of Azotobacter nigricans against trichothecene producing Fusarium spp., associated with cereals. Food Sci Biotechnol 25(4):1197–1204

    Article  CAS  Google Scholar 

  • Naik MK, Rajalaxmi K, Amaresh YS et al (2013) Search for 2, 4 DAPG positive genes in fluorescent Pseudomonas and their exploitation for sustainable disease management. Recent Advances in biofertilizer and bio fungicides (PGPR) for sustainable agriculture. In: Proceedings of the 3rd Asian PGPR Conference on Plant growth promoting rhizobacteria (PGPR) and other microbials, pp 21–24

    Google Scholar 

  • Nayaka SC, Uday Shankar AC, Reddy MS, Niranjana SR, Prakesh HS, Shetty HS, Mortensen CN (2009) Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Pest Manag Sci 65:769–775

    Article  CAS  PubMed  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, University Park

    Google Scholar 

  • Niewiadomska A (2004) Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pratense L.) Pol J Environ Stud 13:403–410

    CAS  Google Scholar 

  • Page WJ, Shivprasad S (1991) Azotobacter salinestris spp. nov, a sodium dependent, micro aerophilic and aero adaptive nitrogen fixing bacteria. Int J Syst Bacteriol 41:369–376

    Article  Google Scholar 

  • Page W, Von Tigerstrom M (1988) Aminochelin, a catecholamine siderophore produced by Azotobacter vinelandii. J Gen Microbiol 134:453–460

    CAS  Google Scholar 

  • Patil V (2011) Production of indole acetic acid by Azotobacter sp. Recent Res Sci Technol 3(12):14–16

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt EL, Ramos PL, Manfio GP, Barbosa HR, Pavan C, Filho CAM (2008) Molecular characterization of nitrogen fixing bacteria isolated from Brazilian agricultural plants at also Paulo state. Braz J Microbiol 39:414–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Toledo MV, Gonzalez-Lopez J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and a diazotrophic conditions. J Appl Microbiol 89(3):486–493

    Article  CAS  PubMed  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55(5):207.212

    Google Scholar 

  • Sachin DN (2009) Effect of Azotobacter chroococcum (PGPR) on the growth of bamboo (Bambusa bamboo) and maize (Zea mays) plants. Biofrontiers 1:24–31

    Google Scholar 

  • Shafiani S, Malik A (2003) Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater irrigated soil. World J Microbiol Biotechnol 19:897–901

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole 3 acetic acid in microbial and microorganism plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Tejera NC, Lluch MV, Martinez T, Gonzalez JL (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal SC, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol. https://doi.org/10.1007/s00284-009-9464-1

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–512

    Article  CAS  PubMed  Google Scholar 

  • Yazar S, Omurtag GZ (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J MolSci 9:2062–2090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chennappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chennappa, G., Sreenivasa, M.Y., Nagaraja, H. (2018). Azotobacter salinestris: A Novel Pesticide-Degrading and Prominent Biocontrol PGPR Bacteria. In: Panpatte, D., Jhala, Y., Shelat, H., Vyas, R. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-10-7146-1_2

Download citation

Publish with us

Policies and ethics