Changing Paradigm of Probiotics from Functional Foods to Biotherapeutic Agents



Biotherapeutics are therapeutic agents derived out of live organisms or from their metabolites, which exerts a therapeutic benefit and wellbeing. In the past three decades, biotherapeutics have become an integral and essential part of modern medicine. Biotherapeutics are known for the patient safety and in some instances are more efficient than conventional medicines due to their ability to target specific molecules, and/or their ability to access the treatment site or organ within the human body and impart their therapeutic effects without any considerable side effects. This chapter documents the changing paradigm of the typical usage of probiotics as functional food to recent trending concepts on the usage of probiotics as biotherapeutic agents for alleviating various human ailments like gastrointestinal cancer, obesity and related metabolic diseases, mental wellbeing and various drug delivery approaches utilizing probiotics as delivery vector.


Metabolic diseases Colon-cancer Targeted delivery Psychobiotics Diabetes 



This work is carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011287022016 and C0407572)”, Rural Development Administration, South Korea.

Authors from National Institute of Technology, Rourkela, Odisha, India acknowledges the support given by the National Institute of Technology, Rourkela, Odisha, India, Department of Science and Technology (SERB/F/5150/2012-13), and Department of Biotechnology (BT/PR6486/GBD/27/433/2012), Govt. of India, New Delhi, India.

Conflict of Interest Statement

The authors declare that they have no conflict of interest disclosed in this work.


  1. Agarwal P et al (2014) Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 31(12):3404–3414PubMedCrossRefGoogle Scholar
  2. Ataie-Jafari A et al (2009) Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab 54(1):22–27PubMedCrossRefGoogle Scholar
  3. Akalın A, Tokuşoğlu Ö, Gönç S, Aycan Ş (2007) Occurrence of conjugated linoleic acid in probiotic yoghurts supplemented with fructooligosaccharide. Int Dairy J 17(9):1089–1095CrossRefGoogle Scholar
  4. Anderson JW, Gilliland SE (1999) Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 18(1):43–50PubMedCrossRefGoogle Scholar
  5. Andersen KK, Marcotte H, Álvarez B, Boyaka PN, Hammarström L (2011) In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnol 11(1):1CrossRefGoogle Scholar
  6. Anukam KC, Osazuwa EO, Osadolor HB, Bruce AW, Reid G (2008) Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol 42(3):239–243PubMedGoogle Scholar
  7. Appleyard CB et al (2011) Pretreatment with the probiotic VSL# 3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol-Gastrointest Liver Physiol 301(6):G1004–G1013PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arimochi H et al (1997) Effect of intestinal bacteria on formation of azoxymethane-induced aberrant crypt foci in the rat colon. Biochem Biophys Res Commun 238(3):753–757PubMedCrossRefGoogle Scholar
  9. Asemi Z et al (2013) Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab 63(1-2):1–9PubMedCrossRefGoogle Scholar
  10. Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM (2011) The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 301(3):G401–G424PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):15718–15723PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baek J et al (2012) Production of human papillomavirus type 33 L1 major capsid protein and virus-like particles from Bacillus subtilis to develop a prophylactic vaccine against cervical cancer. Enzym Microb Technol 50(3):173–180CrossRefGoogle Scholar
  13. Baldwin C et al (2010) Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 62(3):371–378PubMedCrossRefGoogle Scholar
  14. Baricault L et al (1995) Use of HT-29, a cultured human colon cancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation. Carcinogenesis 16(2):245–252PubMedCrossRefGoogle Scholar
  15. Basu S, Paul DK, Ganguly S, Chatterjee M, Chandra PK (2009) Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children: a randomized controlled trial. J Clin Gastroenterol 43(3):208–213. PubMedCrossRefGoogle Scholar
  16. Bassaganya-Riera J et al (2012) Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS One 7(4):e34676PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bazuro G, Torino F, Gasparini G, Capurso L (2008) Chemoprevention in gastrointestinal adenocarcinoma: for few but not for all? Minerva Gastroenterol Dietol 54(4):429–444PubMedGoogle Scholar
  18. Biasco G et al (1991) Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics and fecal pH. Ital J Gastroenterol 23(3):142PubMedGoogle Scholar
  19. Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29(4):625–651PubMedCrossRefGoogle Scholar
  20. Benbouziane B et al (2013) Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 168(2):120–129PubMedCrossRefGoogle Scholar
  21. Bercik P, Collins S, Verdu E (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24(5):405–413PubMedCrossRefGoogle Scholar
  22. Braat H et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759PubMedCrossRefGoogle Scholar
  23. Bregman NJ, McAllister HA (1983) Constraints on the Yerkes-Dodson law in skin temperature biofeedback. Int J Neurosci 21(3–4):183–189PubMedCrossRefGoogle Scholar
  24. Brigic E, Hadzic D, Mladina N (2012) Childhood and Coress model of carcinogenesis. Med Archives 66(6):375CrossRefGoogle Scholar
  25. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743PubMedCrossRefGoogle Scholar
  26. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson G, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383PubMedCrossRefGoogle Scholar
  27. Carroll IM et al (2007) Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol-Gastrointest Liver Physiol 293(4):G729–G738PubMedCrossRefGoogle Scholar
  28. Challa A et al (1997) Bifidobacterium longum and lactulose suppress azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis 18(3):517–521PubMedCrossRefGoogle Scholar
  29. Chen X, D’Souza R, Hong S-T (2013) The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 4(6):403–414PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen X et al (2009) Saccharomyces boulardii inhibits EGF receptor signaling and intestinal tumor growth in Apcmin mice. Gastroenterology 137(3):914–923PubMedPubMedCentralCrossRefGoogle Scholar
  31. Christl S, Gibson G, Cummings J (1992) Role of dietary sulphate in the regulation of methanogenesis in the human large intestine. Gut 33(9):1234–1238PubMedPubMedCentralCrossRefGoogle Scholar
  32. Claes I, Lebeer S, Shen C, Verhoeven T, Dilissen E, De Hertogh G, Bullens D, Ceuppens J, Van Assche G, Vermeire S (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162(2):306–314PubMedPubMedCentralCrossRefGoogle Scholar
  33. Clarke G, Cryan J, Dinan T, Quigley EM (2012a) Review article: probiotics for the treatment of irritable bowel syndrome–focus on lactic acid bacteria. Aliment Pharmacol Ther 35(4):403–413PubMedCrossRefGoogle Scholar
  34. Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG (2012b) A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol 3:90PubMedPubMedCentralCrossRefGoogle Scholar
  35. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney R, Shanahan F, Dinan T, Cryan J (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673PubMedCrossRefGoogle Scholar
  36. Correa P (2012) Review: evolutionary history of the helicobacter pylori genome: implications for gastric carcinogenesis. Gut and Liver 6(1):21–28PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cousin FJ et al (2012) Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One 7(3):e31892PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cronin M, Morrissey D, Rajendran S, El Mashad SM, van Sinderen D, O’Sullivan GC, Tangney M (2010) Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18(7):1397–1407PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P (2008) Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66(3):487–495PubMedCrossRefGoogle Scholar
  40. de LeBlanc ADM et al (2008) Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J Med Microbiol 57(1):100–105PubMedCrossRefGoogle Scholar
  41. Desbonnet L, Clarke G, Shanahan F, Dinan T, Cryan J (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19(2):146PubMedCrossRefGoogle Scholar
  42. Desmond C, Fitzgerald G, Stanton C, Ross R (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol 70(10):5929–5936PubMedPubMedCentralCrossRefGoogle Scholar
  43. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, Rittmann BE (2008) Gut microbiota and its possible relationship with obesity. In: Mayo clinic proceedings, vol 4. Elsevier, pp 460–469Google Scholar
  44. Dinan T, Cryan J (2013) Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil 25(9):713–719PubMedCrossRefGoogle Scholar
  45. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science (New York, NY) 308(5728):1635–1638CrossRefGoogle Scholar
  46. El-Nezami HS et al (2006) Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am J Clin Nutr 83(5):1199–1203PubMedGoogle Scholar
  47. Escamilla J, Lane MA, Maitin V (2012) Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr Cancer 64(6):871–878PubMedCrossRefGoogle Scholar
  48. Ewaschuk JB et al (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136(6):1483–1487PubMedCrossRefGoogle Scholar
  49. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767PubMedCrossRefGoogle Scholar
  50. Femia AP et al (2002) Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis 23(11):1953–1960PubMedCrossRefGoogle Scholar
  51. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917PubMedCrossRefGoogle Scholar
  52. Foligne B et al (2007) Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133(3):862–874PubMedCrossRefGoogle Scholar
  53. Fotiadis CI, Stoidis CN, Spyropoulos BG, Zografos ED (2008) Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J Gastroenterol: WJG 14(42):6453–6457PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fuller R (1991) Probiotics in human medicine. Gut 32(4):439Google Scholar
  55. Fuentes MC et al (2013) Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 109(10):1866–1872PubMedCrossRefGoogle Scholar
  56. Gallaher DD, Stallings WH, Blessing LL, Busta FF, Brady LJ (1996) Probiotics, cecal microflora, and aberrant crypts in the rat colon. J Nutr 126(5):1362PubMedGoogle Scholar
  57. García-Fruitós E (2012) Lactic acid bacteria: a promising alternative for recombinant protein production. Microb Cell Factories 11:157CrossRefGoogle Scholar
  58. Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2013) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes 5(1):3–17CrossRefGoogle Scholar
  59. Ghoneum M et al (2005) Human squamous cell carcinoma of the tongue and colon undergoes apoptosis upon phagocytosis of Saccharomyces cerevisiae, the baker’s yeast, in vitro. Anticancer Res 25(2A):981–989PubMedGoogle Scholar
  60. Gill H, Rutherfurd K, Cross M (2001) Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. J Clin Immunol 21(4):264–271PubMedCrossRefGoogle Scholar
  61. Gionchetti P et al (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119(2):305–309PubMedCrossRefGoogle Scholar
  62. Goldin BR, Swenson L, Dwyer J, Sexton M, Gorbach SL (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J Natl Cancer Inst 64(2):255–261PubMedCrossRefGoogle Scholar
  63. Goldin BR, Gorbach SL (1984) The effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39(5):756–761PubMedCrossRefGoogle Scholar
  64. Goldin BR, Gualtieri LJ, Moore RP (1996) The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr Cancer 25(2):197–204PubMedCrossRefGoogle Scholar
  65. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2(94.10):3389Google Scholar
  66. Grimoud J et al (2010) In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int J Food Microbiol 144(1):42–50PubMedCrossRefGoogle Scholar
  67. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C (2004) Definition of metabolic syndrome report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Circulation 109(3):433–438PubMedCrossRefGoogle Scholar
  68. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27(3):202–209. PubMedCrossRefGoogle Scholar
  69. Han W et al (2006) Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm Bowel Dis 12(11):1044–1052PubMedCrossRefGoogle Scholar
  70. Handa O, Naito Y, Yoshikawa T (2011) Redox biology and gastric carcinogenesis: the role of Helicobacter pylori. Redox Rep 16(1):1–7PubMedCrossRefGoogle Scholar
  71. Harisa G, Taha E, Khalil A, Salem M (2009) Oral administration of Lactobacillus acidophilus restores nitric oxide level in diabetic rats. Aust J Basic Appl Sci 3(3):2963–2969Google Scholar
  72. Health Canada. Accepted Claims about the Nature of Probiotic Microorganisms in Food (2009) Health Canada. Available via Health Canada. 2009
  73. Heilbronn LK, Campbell LV (2008) Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 14(12):1225–1230PubMedCrossRefGoogle Scholar
  74. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514PubMedCrossRefGoogle Scholar
  75. Higashikawa F et al (2010) Improvement of constipation and liver function by plant-derived lactic acid bacteria: a double-blind, randomized trial. Nutrition 26(4):367–374PubMedCrossRefGoogle Scholar
  76. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925PubMedCrossRefGoogle Scholar
  77. Hosono A, Otani H, Yasui H, Watanuki M (2002) Impact of fermented milk on human health: cholesterol-lowering and immunomodulatory properties of fermented milk. Anim Sci J 73(4):241–256CrossRefGoogle Scholar
  78. Iemoli E et al (2012) Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J Clin Gastroenterol 46:S33–S40PubMedCrossRefGoogle Scholar
  79. Ivory K et al (2008) Oral delivery of Lactobacillus casei Shirota modifies allergen-induced immune responses in allergic rhinitis. Clin Exp Allergy 38(8):1282–1289PubMedCrossRefGoogle Scholar
  80. Iyer C et al (2008) Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-κB and MAPK signalling. Cell Microbiol 10(7):1442–1452PubMedCrossRefGoogle Scholar
  81. Jan G et al (2002) Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 9(2):179–188PubMedCrossRefGoogle Scholar
  82. Jones ML et al (2012) Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 107(10):1505–1513PubMedCrossRefGoogle Scholar
  83. Kajikawa A et al (2012) Construction and immunological evaluation of dual cell surface display of HIV-1 gag and Salmonella enterica serovar Typhimurium FliC in Lactobacillus acidophilus for vaccine delivery. Clin Vaccine Immunol 19(9):1374–1381PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kalliomäki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538PubMedGoogle Scholar
  85. Kaur IP, Chopra K, Saini A (2002) Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15(1):1–9PubMedCrossRefGoogle Scholar
  86. Khanna S, Tosh PK (2014) A clinician’s primer on the role of the microbiome in human health and disease. In: Mayo clinic proceedings, vol 1. Elsevier, pp 107–114Google Scholar
  87. Kim Y et al (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 31(4):468–473PubMedCrossRefGoogle Scholar
  88. Kim JY, Kwon JH, Ahn SH, Lee SI, Han YS, Choi YO, Lee SY, Ahn KM, Ji GE (2010) Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr Allergy Immunol 21(2p2):e386–e393PubMedCrossRefGoogle Scholar
  89. Korhonen R, Korpela R, Saxelin M, Mäki M, Kankaanranta H, Moilanen E (2001) Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation 25(4):223–232PubMedCrossRefGoogle Scholar
  90. Kulkarni N, Reddy BS (1994) Inhibitory effect of Bifidobacterium iongum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial β-glucuronidase. Exp Biol Med 207(3):278–283Google Scholar
  91. Le Leu RK et al (2005) A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J Nutr 135(5):996–1001PubMedCrossRefGoogle Scholar
  92. Le Leu RK et al (2010) Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 31(2):246–251PubMedCrossRefGoogle Scholar
  93. LeBlanc JG, Aubry C, Cortes-Perez NG, De LeBlanc ADM, Vergnolle N, Langella P, Azevedo V, Chatel J-M, Miyoshi A, Bermúdez-Humarán LG (2013) Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update. FEMS Microbiol Lett 344(1):1–9PubMedCrossRefGoogle Scholar
  94. Lee J-W et al (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5(1):41–48PubMedGoogle Scholar
  95. Lee J-S, Poo H, Han DP, Hong S-P, Kim K, Cho MW, Kim E, Sung M-H, Kim C-J (2006) Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 80(8):4079–4087PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lee P, Faubert GM (2006) Oral immunization of BALB/c mice by intragastric delivery of Streptococcus gordonii-expressing Giardia cyst wall protein 2 decreases cyst shedding in challenged mice. FEMS Microbiol Lett 265(2):225–236PubMedCrossRefGoogle Scholar
  97. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023PubMedCrossRefGoogle Scholar
  98. Li X et al (2003) Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther 10(2):105–111PubMedCrossRefGoogle Scholar
  99. Lin T, Lin C-W, Wang Y-J (2003) Production of conjugated linoleic acid by enzyme extract of Lactobacillus acidophilus CCRC 14079. Food Chem 83(1):27–31CrossRefGoogle Scholar
  100. Linsalata M et al (2005) Effects of probiotic bacteria (VSL# 3) on the polyamine biosynthesis and cell proliferation of normal colonic mucosa of rats. In Vivo 19(6):989–995PubMedGoogle Scholar
  101. Linsalata M et al (2010) Lactobacillus rhamnosus GG influences polyamine metabolism in HGC-27 gastric cancer cell line: a strategy toward nutritional approach to chemoprevention of gastric cancer. Curr Pharm Des 16(7):847–853PubMedCrossRefGoogle Scholar
  102. Loh YH, Jakszyn P, Luben RN, Mulligan AA, Mitrou PN, Khaw K-T (2011) N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk Study. Am J Clin Nutr 93(5):1053–1061PubMedCrossRefGoogle Scholar
  103. Lomax A, Calder P (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15(13):1428–1518PubMedCrossRefGoogle Scholar
  104. Lombardo MP (2008) Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 62(4):479–497CrossRefGoogle Scholar
  105. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33(8):574–581PubMedCrossRefGoogle Scholar
  106. Ma EL et al (2010) The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer 127(4):780–790PubMedPubMedCentralGoogle Scholar
  107. Ma Y et al (2014) Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice. PLoS One 9(8):e105701PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coliadherence in vitro by inducing intestinal mucin gene expression. Am J Physiol Gastrointest Liver Physiol 276(4):G941–G950CrossRefGoogle Scholar
  109. Macouzet M, Lee B, Robert N (2009) Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5. J Appl Microbiol 106(6):1886–1891PubMedCrossRefGoogle Scholar
  110. Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, Tjalsma H (2011) Towards the human colorectal cancer microbiome. PLoS One 6(5):e20447PubMedPubMedCentralCrossRefGoogle Scholar
  111. Martin FPJ, Wang Y, Sprenger N, Yap IK, Lundstedt T, Lek P, Rezzi S, Ramadan Z, van Bladeren P, Fay LB (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4(1):157PubMedPubMedCentralGoogle Scholar
  112. Martins-de-Souza D (2010) Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia. J Psychiatr Res 44(3):149–156PubMedCrossRefGoogle Scholar
  113. Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T (1997a) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44(3):357–365PubMedCrossRefGoogle Scholar
  114. Matsuzaki T, Nagata Y, Kado S, Uchida K, Hashimoto S, Yokokura T (1997b) Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 105(7–12):637–642PubMedCrossRefGoogle Scholar
  115. Matsuzaki T, Nagata Y, Kado S, Uchida K, Kato I, Hashimoto S, Yokokura T (1997c) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105(7–12):643–649PubMedCrossRefGoogle Scholar
  116. Mayer EA (2011) Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 12(8):453–466PubMedCrossRefGoogle Scholar
  117. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110(9):3229–3236PubMedPubMedCentralCrossRefGoogle Scholar
  118. McIntosh GH, Royle PJ, Playne MJ (1999) A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr Cancer 35(2):153–159PubMedCrossRefGoogle Scholar
  119. Medaglini D, Ciabattini A, Spinosa MR, Maggi T, Marcotte H, Oggioni MR, Pozzi G (2001) Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 19(15):1931–1939PubMedCrossRefGoogle Scholar
  120. Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261PubMedCrossRefGoogle Scholar
  121. Ministero della Salute. Commissione unica per la nutrizione e la dietetica. Guidelines on probiotics and prebiotics (2013) Ministero della Salute.
  122. Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B (2009) Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed 22(3):342–348PubMedCrossRefGoogle Scholar
  123. Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G (2014) The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Beyond the borders: the gates and fences of Neuroimmune interactionGoogle Scholar
  124. Nicodemus KK, Elvevåg B, Foltz PW, Rosenstein M, Diaz-Asper C, Weinberger DR (2014) Category fluency, latent semantic analysis and schizophrenia: a candidate gene approach. Cortex 55:182–191PubMedCrossRefGoogle Scholar
  125. Ohara T, Yoshino K, Kitajima M (2009) Possibility of preventing colorectal carcinogenesis with probiotics. Hepato-Gastroenterology 57(104):1411–1415Google Scholar
  126. Ohigashi S et al (2011) Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today 41(9):1200–1206PubMedCrossRefGoogle Scholar
  127. Ohkawara S et al (2007) Effect of oral administration of Butyrivibrio fibrisolvens MDT-1, a gastrointestinal bacterium, on 3-methylcholanthrene-induced tumor in mice. Nutr Cancer 59(1):92–98PubMedCrossRefGoogle Scholar
  128. O’Mahony L et al (2011) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15(8):1219–1225Google Scholar
  129. O’Sullivan E, Barrett E, Grenham S, Fitzgerald P, Stanton C, Ross RP, Quigley EM, Cryan JF, Dinan TG (2011) BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Benefic Microbes 2(3):199–207. CrossRefGoogle Scholar
  130. Organization WH (2000) Obesity: preventing and managing the global epidemic, vol 894. World Health Organization, GenevaGoogle Scholar
  131. Orlando A et al (2009) Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol Immunotoxicol 31(1):108–116PubMedCrossRefGoogle Scholar
  132. Orlando A et al (2012) Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2. 1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr Cancer 64(7):1103–1111PubMedCrossRefGoogle Scholar
  133. Otte J-M et al (2008) Probiotics regulate the expression of COX-2 in intestinal epithelial cells. Nutr Cancer 61(1):103–113CrossRefGoogle Scholar
  134. Pagnini C et al (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci 107(1):454–459PubMedCrossRefGoogle Scholar
  135. Pan SY, Morrison H (2011) Epidemiology of cancer of the small intestine. World J Gastrointest Oncol 3(3):33–42PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarström Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194(11):1580–1588PubMedCrossRefGoogle Scholar
  137. Perdigon G et al (2002) Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr 56:S21–S26PubMedCrossRefGoogle Scholar
  138. Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1(1):1CrossRefGoogle Scholar
  139. Pool-Zobel B et al (1996) Lactobacillus-and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr Cancer 26(3):365–380PubMedCrossRefGoogle Scholar
  140. Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol 9(9):560Google Scholar
  141. Rafter J et al (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85(2):488–496PubMedGoogle Scholar
  142. Rao CV et al (1999) Prevention of colonic preneoplastic lesions by the probiotic Lactobacillus acidophilus NCFMTM in F344 rats. Int J Oncol 14(5):939–983PubMedGoogle Scholar
  143. Reddy BS, Rivenson A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo [4, 5-f] quinoline, a food mutagen. Cancer Res 53(17):3914–3918PubMedGoogle Scholar
  144. Reveneau N et al (2002) Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 20(13):1769–1777PubMedCrossRefGoogle Scholar
  145. Ribelles P, Benbouziane B, Langella P, Suárez JE, Bermúdez-Humarán LG, Riazi A (2013) Protection against human papillomavirus type 16-induced tumors in mice using non-genetically modified lactic acid bacteria displaying E7 antigen at its surface. Appl Microbiol Biotechnol 97(3):1231–1239PubMedCrossRefGoogle Scholar
  146. Roller M, Pietro Femia A, Caderni G, Rechkemmer G, Watzl B (2004) Intestinal immunity of rats with colon cancer is modulated by oligofructose-enriched inulin combined with Lactobacillus rhamnosus and Bifidobacterium lactis. Br J Nutr 92(6):931–938PubMedCrossRefGoogle Scholar
  147. Rowland I et al (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19(2):281–285PubMedCrossRefGoogle Scholar
  148. Rowland IR (2009) The role of the gastrointestinal microbiota in colorectal cancer. Curr Pharm Des 15(13):1524–1527PubMedCrossRefGoogle Scholar
  149. Russell WR, Hoyles L, Flint HJ, Dumas M-E (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16(3):246–254PubMedCrossRefGoogle Scholar
  150. Sachdeva A, Nagpal J (2009) Effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication: a systematic review and meta-analysis of randomized-controlled trials. Eur J Gastroenterol Hepatol 21(1):45–53PubMedCrossRefGoogle Scholar
  151. Sainio E-L (1997) The role of adrenal hormones in the activation of tryptophan 2, 3-dioxygenase by nicotinic acid in rat liver. Methods Find Exp Clin Pharmacol 19(7):465–470PubMedGoogle Scholar
  152. Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 66(2):515S–520SPubMedCrossRefGoogle Scholar
  153. Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW (2015) Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232(10):1793–1801PubMedCrossRefGoogle Scholar
  154. Schnekenburger M, Diederich M (2012) Epigenetics offer new horizons for colorectal cancer prevention. Curr Color Cancer Rep 8(1):66–81CrossRefGoogle Scholar
  155. Schottenfeld D, Beebe-Dimmer JL, Vigneau FD (2009) The epidemiology and pathogenesis of neoplasia in the small intestine. Ann Epidemiol 19(1):58–69PubMedPubMedCentralCrossRefGoogle Scholar
  156. Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics—approaching a definition. Am J Clin Nutr 73(2):361s–364sPubMedGoogle Scholar
  157. Schultz M (2008) Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis 14(7):1012–1018PubMedCrossRefGoogle Scholar
  158. Schultz M, Strauch UG, Linde H-J, Watzl S, Obermeier F, Göttl C, Dunger N, Grunwald N, Schölmerich J, Rath HC (2004) Preventive effects of Escherichia coli strain Nissle 1917 on acute and chronic intestinal inflammation in two different murine models of colitis. Clin Diagn Lab Immunol 11(2):372–378PubMedPubMedCentralGoogle Scholar
  159. Şerban DE (2011) The gut microbiota in the metagenomics era: sometimes a friend, sometimes a foe. Rom Archive 10:134Google Scholar
  160. Sharma R, Young C, Mshvildadze M, Neu J (2009) Intestinal microbiota does it play a role in diseases of the neonate? NeoReviews 10(4):e166–e179CrossRefGoogle Scholar
  161. Shinkai S et al (2013) Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr 109(10):1856–1865PubMedCrossRefGoogle Scholar
  162. Sokol H, Arnaud-Pigneur B, Watterlot L, Lakhdari O, Blottiere HM, Grangette C, Trugnan G, Dore JM, Thomas G, Marteau PR (2008) M1199 counterbalancing dysbiosis in Crohn’s disease: faecalibacterium prausnitzii, a major commensal bacterium, exhibits in vitro and in vivo anti-inflammatory effects. Gastroenterology 134(4):A-359Google Scholar
  163. Spanhaak S, Havenaar R, Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr 52(12):899–907PubMedCrossRefGoogle Scholar
  164. Sreekumar O, Hosono A (1998a) The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can J Microbiol 44(11):1029–1036PubMedCrossRefGoogle Scholar
  165. Sreekumar O, Hosono A (1998b) The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat Res Fundam Mol Mech Mutagen 421(1):65–72CrossRefGoogle Scholar
  166. Stein K et al (2012) Effects of synbiotic fermentation products on primary chemoprevention in human colon cells. J Nutr Biochem 23(7):777–784PubMedCrossRefGoogle Scholar
  167. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275PubMedPubMedCentralCrossRefGoogle Scholar
  168. Sun P et al (2007) Anti-hypercalcemic effect of orally administered recombinant Saccharomyces cerevisiae expressing salmon calcitonin on hypercalcemic rats. Biotechnol Lett 29(7):1013–1018PubMedCrossRefGoogle Scholar
  169. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67(6):1421–1424PubMedCrossRefGoogle Scholar
  170. Takagi A et al (2008) Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J Gastroenterol 43(9):661–669PubMedCrossRefGoogle Scholar
  171. Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, Fujisawa M, Kawabata M, Hotta H, Shirakawa T (2014) Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine 32(25):3066–3074PubMedCrossRefGoogle Scholar
  172. Takiishi T et al (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122(5):1717PubMedPubMedCentralCrossRefGoogle Scholar
  173. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 121(9):91PubMedCrossRefGoogle Scholar
  174. Terpstra AH (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr 79(3):352–361PubMedCrossRefGoogle Scholar
  175. Torii S et al (2010) Effects of oral administration of Lactobacillus acidophilus L-92 on the symptoms and serum markers of atopic dermatitis in children. Int Arch Allergy Immunol 154(3):236–245PubMedCrossRefGoogle Scholar
  176. de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206PubMedCrossRefGoogle Scholar
  177. Thiel A, Ristimäki A (2012) Gastric cancer: basic aspects. Helicobacter 17(s1):26–29PubMedCrossRefGoogle Scholar
  178. Thirabunyanon M, Hongwittayakorn P (2013) Potential probiotic lactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl Biochem Biotechnol 169(2):511–525PubMedCrossRefGoogle Scholar
  179. Troyer K (1984) Microbes, herbivory and the evolution of social behavior. J Theor Biol 106(2):157–169CrossRefGoogle Scholar
  180. Urbanska AM et al (2009) Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc (Min/+) mice. Dig Dis Sci 54(2):264–273PubMedCrossRefGoogle Scholar
  181. Vandenbroucke K, De Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler L, Remaut E (2010) Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3(1):49–56PubMedCrossRefGoogle Scholar
  182. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14(11):1585–1596PubMedCrossRefGoogle Scholar
  183. Venturi A et al (1999) Impact on the composition of the faecal ora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 13(8):11031108CrossRefGoogle Scholar
  184. Venturi M, Hambly RJ, Glinghammar B, Rafter JJ, Rowland IR (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18(12):2353–2359PubMedCrossRefGoogle Scholar
  185. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science (New York, NY) 328(5975):228–231CrossRefGoogle Scholar
  186. Viswanathan J, Haapasalo A, Kurkinen KM, Natunen T, Mäkinen P, Bertram L, Soininen H, Tanzi RE, Hiltunen M (2013) Ubiquilin-1 modulates γ-secretase-mediated ε-site cleavage in neuronal cells. Biochemistry 52(22):3899–3912PubMedCrossRefGoogle Scholar
  187. Wang K-Y et al (2004) Effects of ingesting Lactobacillus-and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am J Clin Nutr 80(3):737–741PubMedCrossRefGoogle Scholar
  188. Wang Y, Jones PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes 28(8):941–955CrossRefGoogle Scholar
  189. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6(2):320–329PubMedCrossRefGoogle Scholar
  190. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Investig 112(12):1785PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wells J (2011a) Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol 2:423–445PubMedCrossRefGoogle Scholar
  193. Wells JM (2011b) Immunomodulatory mechanisms of lactobacilli. Microb Cell Factories 10(1):1CrossRefGoogle Scholar
  194. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113PubMedPubMedCentralCrossRefGoogle Scholar
  195. West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J (1998) Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Phys Regul Integr Comp Phys 275(3):R667–R672Google Scholar
  196. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci 106(10):3698–3703PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yadav H, Jain S, Sinha P (2007a) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23(1):62–68PubMedCrossRefGoogle Scholar
  198. Yadav H, Jain S, Sinha P (2007b) Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. Int Dairy J 17(8):1006–1010CrossRefGoogle Scholar
  199. Yamano T, Tanida M, Niijima A, Maeda K, Okumura N, Fukushima Y, Nagai K (2006) Effects of the probiotic strain Lactobacillus johnsonii strain La1 on autonomic nerves and blood glucose in rats. Life Sci 79(20):1963–1967PubMedCrossRefGoogle Scholar
  200. Yeşilova Y et al (2012) Effect of probiotics on the treatment of children with atopic dermatitis. Ann Dermatol 24(2):189–193PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yoon J-W, Jun H-S (2005) Autoimmune destruction of pancreatic β cells. Am J Ther 12(6):580–591PubMedCrossRefGoogle Scholar
  202. Yu Z, Huang Z, Sao C, Huang Y, Zhang F, Ma G, Chen Z, Zeng Z, Qiwen D, Zeng W (2013) Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71. Arch Virol 158(5):1071–1077PubMedCrossRefGoogle Scholar
  203. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–e00613PubMedPubMedCentralCrossRefGoogle Scholar
  204. Zhang M-M, Cheng J-Q, Xia L, Lu Y-R, Wu X-T (2011) Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med Hypotheses 76(5):670–672PubMedCrossRefGoogle Scholar
  205. Zhang J-W et al (2012) Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. Am J Med Sci 343(3):199–205PubMedCrossRefGoogle Scholar
  206. Zhou L, Chen H, Wen Q, Zhang Y (2012) Indoleamine 2,3-dioxygenase expression in human inflammatory bowel disease. Eur J Gastroenterol Hepatol 24(6):695–701. PubMedCrossRefGoogle Scholar
  207. Zhu Y, Luo TM, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309(2):119–127PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Life Science, Food Microbiology and Bioprocess LaboratoryNational Institute of TechnologyRourkelaIndia
  2. 2.Center for Nutraceutical and Pharmaceutical MaterialsMyongji UniversityYonginSouth Korea
  3. 3.Myongji University Bioefficiency Research CentreYonginSouth Korea
  4. 4.Interdisciplinary Program of Biomodulation, College of Natural ScienceMyongji UniversityYonginSouth Korea
  5. 5.Department of BiotechnologyChonnam National UniversityYeosuSouth Korea
  6. 6.Division of Bioscience and Bioinformatics, College of Natural ScienceMyongji UniversityYonginSouth Korea

Personalised recommendations