Skip to main content

Microbial Remediation of Persistent Agro-chemicals by Soil Bacteria: An Overview

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Occupational and environmental exposure to agrochemicals, more commonly to pesticides, result in serious health hazards. While less than 1% of applied agro-chemicals are effective against pests, most of the synthetic compounds persist in soil or leach to groundwater and thereby contaminating wider habitats. The impact of bioaccumulation and biomagnifications of agro-POPs in mammals or humans are overwhelming. Biological methods employed for decontamination have proved to be effective than the conventional and expensive physicochemical methods. Individual bacteria or consortia of soil microbes, either indigenous or genetically modified, carry out microbial remediation through variety of biochemical pathways. Most of the instances these biochemical pathways are coupled with their inherent metabolic pathways of growth and development. The key tools in the degradation process are the enzymes, acted extra-cellularly (breakdown of polymeric structure) or intra-cellularly (mineralization). Most commonly used microbes or their enzymes include species from Pseudomonas, Micrococcus, Acetobacter and Bacillus genera. Exploring and exploiting the microbial and genetic resource may reduce the threat of non-degradation of xenobiotic pollutants. This chapter will give an account on bacteria involved in degradation of different groups of persistent agrochemicals and discuss biotechnological methods helpful in improving agro-chemical degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Amer AE (2007) Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112. Acta Microbiol Immunol Hung 54:261–277

    CAS  PubMed  Google Scholar 

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities and sediments. Curr Opin Microbiol 5:46–53

    Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47:563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, San Diego

    Google Scholar 

  • Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    CAS  PubMed  Google Scholar 

  • Arroyo M (1998) Inmovilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharm 39(2):23–39

    Google Scholar 

  • Arya R, Kumar R, Mishra NK, Sharma AK (2017) Chapter 15: Microbial flora and biodegradation of pesticides: trends, scope, and relevance. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore

    Google Scholar 

  • Azizi A (2011) Bacterial-degradation of pesticides residue in vegetables during fermentation, pesticides – formulations, effects, fate. In: Stoytcheva M (ed). InTech. https://doi.org/10.5772/13724. Available from https://www.intechopen.com/books/pesticides-formulations-effects-fate/bacterial-degradation-of-pesticides-residue-in-vegetables-during-fermentation

    Google Scholar 

  • Baishya B, Sarma HP (2015) Advances in biodegradation of organophosphorus pesticides. Arch Appl Sci Res. 2015 7(4):37–43

    CAS  Google Scholar 

  • Barreiros L, Nogales B, Manaia CM, Silva-Ferreira AC, Pieper DH, Reis MA, Nunes OC (2003) A novel pathway for mineralization of the thiocarbamate herbicide molinate by a defined bacterial mixed culture. Environ Microbiol 5(10):944–953

    CAS  PubMed  Google Scholar 

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1(2):219–234

    CAS  Google Scholar 

  • Beate B, Andreas T, Christian F (1993) Degradation of phen-anthrene, fluorene, fluoranthene, and pyrene by a myco-bacterium sp. Appl Environ Microbiol 59:1927–1930

    Google Scholar 

  • Behki RM, Khan SU (1991) Inhibitory effect of parathion on the bacterial degradation of EPTC. J Agric Food Chem 39:805–808

    CAS  Google Scholar 

  • Behki RM, Khan SU (1994) Degradation of atrazine, propazine, and simazine by Rhodococcus strain B-30. J Agric Food Chem 42:1237–1241

    CAS  Google Scholar 

  • Bosch RVD (1989) The pesticide conspiracy. University of California Press, Berkeley

    Google Scholar 

  • Brown KA (1980) Phosphotriesterases of Flavobacterium sp. Soil Biol Biochem 12:105–112

    CAS  Google Scholar 

  • Campos M, Perruchon C, Vasilieiadis S, Menkissoglu-Spiroudi U, Karpouzas DG, Diez MC (2015) Isolation and characterization of bacteria from acidic pristine soil environment able to transform iprodione and 3,5-dichloraniline. Int Biodeterior Biodegrad 104:201–211

    CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Pol 9:685–692. https://doi.org/10.1016/j.envsci.2006.08.002

    Article  Google Scholar 

  • Cases V, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8(3):213–222

    CAS  PubMed  Google Scholar 

  • Chanika E, Georgiadou D, Soueref E, Karas P, Karanasios E, Nikolaos GT, Tzortzakakis EA, Karpouzas DG (2011) Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides. Bioresour Technol 102:3184–3192. ISSN 09608524

    CAS  PubMed  Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1991) Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl. Appl Environ Microbiol 57(3):744–775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry GR, Ali HD (1988) Bacterial metabolism of carbofuran. Appl Environ Microbiol 54:1414–1419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Georgiou G (2002) Cell-surface display of heterologous proteins: from high throughput screening to environmental applications. Biotechnol Bioeng 5:496–503. https://doi.org/10.1002/bit.10407

    Article  CAS  Google Scholar 

  • Chen W, Mulchandani A (1998) The use of live biocatalysts for pesticide detoxification. Trends Biotechnol 16:71

    CAS  PubMed  Google Scholar 

  • Clinton B, Warden AC, Haboury S, Easton CJ, Kotsonis S, Taylor MC, Oakeshott JG, Russell RJ, Scott C (2011) Bacterial degradation of strobilurin fungicides: a role for a promiscuous methyl esterase activity of the subtilisin proteases? Biocat Biotrans 29(4):119–129

    CAS  Google Scholar 

  • Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenyl urea herbicides by a soil. Soil Biol Biochem 31:677–686

    CAS  Google Scholar 

  • de Souza ML, Sadowsky ML, Wackrtt LP (1996) Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification and protein characterization. J Bacteriol 178:4894–4900

    PubMed  PubMed Central  Google Scholar 

  • Derbyshire MK, Karns JS, Kearney PC, Nelson JO (1987) Purification and characterization of an N-methyl carbamate pesticide hydrolyzing enzyme. J Agric Food Chem 35:871–877

    CAS  Google Scholar 

  • Digrak M, Ozcelik S, Celik S (1995) Degradation of ethion and methidation by some microorganisms. 35th IUPAC Congress. Istanbul, 14:19–84

    Google Scholar 

  • Ebah E, Ichor T, Okpokwasili GC (2016) Isolation and biological characterization of tributyltin degrading bacterial from onne port sediment. Open J Mar Sci 6:193–199

    Google Scholar 

  • El-Naas MH, Al-Muhtaseb SA, Makhlouf S (2009) Biodegradation of phenol by pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater 164(2–3):720–725

    CAS  PubMed  Google Scholar 

  • Ewida AYI (2014) Biodegradation of alachlor and endosulfan using environmental bacterial strains. World Appl Sci J 32(4):540–547. https://doi.org/10.5829/idosi.wasj.2014.32.04.14530

    Article  CAS  Google Scholar 

  • Fang C, Radosevich M, Fuhrmann JJ (2001) Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol Biochem 3:671–678

    Google Scholar 

  • FAO (2009) Feeding the world in 2050. World agricultural summit on food security 16–18 Nov 2009. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4(7):4–14. ISSN 1752-0509

    Google Scholar 

  • Fogel S, Lancione RL, Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl Environ Microbiol 44:113–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsche W, Hofrichter M (2008) Aerobic degradation by microorganisms. In: Rehm HJ, Reed G (eds) Biotechnology set, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim. https://doi.org/10.1002/9783527620999.ch6m

    Chapter  Google Scholar 

  • Fuentes MS, Briceño GE, Saez JM, Benimeli CS, Diez MC, Amoroso MJ (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized streptomyces strains. BioMed Res Int 2013:1–9. https://doi.org/10.1155/2013/392573

    Article  CAS  Google Scholar 

  • Fujii K, Takagi K, Hiradate S, Iwasaki A, Harada N (2007) Biodegradation of methylthio- s-triazines by Rhodococcus sp. strain FJ1117YT, and production of the corresponding methylsulfinil, methylsulfonyl and hydroxyl analogues. Pest Manag Sci 63(3):254–260

    CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  • Gajda T, Jancso A (2010) Organotins: formation, use, speciation, and toxicology. Met Ions Life Sci 7:111–151

    CAS  PubMed  Google Scholar 

  • Ghisalba O, Kueenzi Ramos M, Tombo GM, Schaer HP (1987) Organophosphorous microbial degradation and utilization of selected organophosphorous compounds: strategies and applications. Chemia 41:206–210

    CAS  Google Scholar 

  • Gibson SA, Sulflita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyoacetic acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol 56:1825–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gigliotti C, Allievi L, Salardi C, Ferrari F, Farini A (1998) Microbial ecotoxicity and persistence in soil of the herbicide bensulfuron-methyl. J Environ Sci Health B 33:381–398

    Google Scholar 

  • Gunasekara AS, Rubin AL, Goh KS et al (2008) Environmental fate and toxicology of carbaryl. Rev Environ Contam Toxicol 196:95–121

    CAS  PubMed  Google Scholar 

  • Gunnell D, Eddleston M (2003) Suicide by intentional ingestion of pesticides: a continuing tragedy in developing countries. Int J Epidemiol 32:902–909

    PubMed  PubMed Central  Google Scholar 

  • Gupta PK (1986) Pesticides in the Indian environment. Interprint, New Delhi, pp 1–206

    Google Scholar 

  • Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 198:83–90. https://doi.org/10.1016/j.tox.2004.01.021

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Salunkhe DK (eds) (1985) Modern toxicology. Metropolitan Book Company, New Delhi, pp 1–60

    Google Scholar 

  • Gurusubramanian G, Rahman A, Sarmah M, Ray S, Bora S (2008) Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. J Environ Biol 29:813–826

    CAS  PubMed  Google Scholar 

  • Ha J, Engler CR, Lee SJ (2008) Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads. Biotechnol Bioeng 100(4):698–706. https://doi.org/10.1002/bit.21761

    Article  CAS  PubMed  Google Scholar 

  • Ha J, Engler CR, Wild J (2009) Biodegradation of coumaphos, chlorferon, and diethylthio‐ phosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142

    CAS  PubMed  Google Scholar 

  • Iqbal M, Edyvean RGJ (2004) Biosorption of lead, copper and zinc ions on loofa immobilized biomass of Phanerochaete chrysosporium. Miner Eng 17:217–223

    CAS  Google Scholar 

  • Ishag AESA, Abdelbagi AO, Hammad AMA, Elsheikh EAE, lsaid OE, Hur JH, Laing MD (2016) Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498

    CAS  PubMed  Google Scholar 

  • Jeyaratnam J (1990) Pesticide poisoning: as a major global health problem. World Health Stat Q 43:139–144

    CAS  PubMed  Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fertil Soils 33(6):443–453

    CAS  Google Scholar 

  • Julia F, Trevor A, Kevin B, Jackie A (2001) Bioremediation J 5(3):225–246

    Google Scholar 

  • Kang H, Hwang SY, Kim YM, Kim E, Kim YS, Kim SK, Kim SW, Cerniglia CE, Shuttleworth KL, Zylstra GJ (2003) Degradation of phenanthrene and naphthalene by a Burk-holderia species strain. Can J Microbiol 49:139–144

    CAS  PubMed  Google Scholar 

  • Kaphammer B, Olsen RH (1990) Cloning and characterisation of tfdS, the repressor- activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid PJP4. J Bacteriol 172:5856–5862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaphammer B, Kukor JJ, Olsen RH (1990) Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradative plasmid PJP4. J Bacteriol 172:2280–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karalliedde L (1999) Organophosphorus poisoning and anaesthesia. Anaesthesia 54:1073–1088

    CAS  PubMed  Google Scholar 

  • Karpouzas DG, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol Ecol 53:369–378

    CAS  PubMed  Google Scholar 

  • Karunakaran CO (1958) The Kerala food poisoning. J Indian Med Assoc 31:204–205

    CAS  PubMed  Google Scholar 

  • Katz I, Dosoretz CG, Mandelbaum RT, Green M (2001) Atrazine degradation under denitrifying conditions in continuous culture of Pseudomonas ADP. Water Res 35:3272–3275

    CAS  PubMed  Google Scholar 

  • Kaufman DD, Blake J (1973) Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem 5(3):297–308

    CAS  Google Scholar 

  • Kennedy JF, Cabral JMS (1983) In: Schouten WH (ed) Solid phase biochemistry. Wiley, New York

    Google Scholar 

  • Kim YM, Ahna CK, Wood SH, Jungb GY, Parka JM (2009) Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. J Biotechnol 144:293–298

    CAS  PubMed  Google Scholar 

  • Kuthubutheen AJ, Wickneswari STR, Das VGK (1989) Effect of six triorganotin(IV) compounds on nitrification and ammonification in soil. Appl Organomet Chem 3:319–333

    CAS  Google Scholar 

  • Laemmli CM, Leveau JHJ, Zehnder AJB, Van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol 182:4165–4172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linn DM, Carski TH, Brusseau ML, Chang FH (1993) Sorption and degradation of pesticides and organic chemicals in soils, SSSA Special Publication No. 32. Soil Science Society of America, Madison

    Google Scholar 

  • Lipthay JR, Barkay T, Sørensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2, 4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35(1):75–84

    PubMed  Google Scholar 

  • Lusta KA, Starostina NG, Fikhte BA (1990) Immobilization of microorganisms: cytophysiological aspects. In: De Bont JAM, Visser J, Mattiasson B, Tramper J (eds) Proceedings of an international symposium: physiology of immmobilized cells. Elsevier, Amsterdam

    Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Mengs G, Plaza E, Garbi C, Sánchez M, Gibello A, Gutierrez F, Ferrer E (2000) Propachlor removal by Pseudomonas strain GCH1 in an immobilized-cell system. Appl Environ Microbiol 66(3):1190–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanci M, Unyayara (2005) Decolourisation of reactive black 5 by Funalia trogii immobilized on loofa cylindrical sponge. Process Biochem 40:337–342

    CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    CAS  PubMed  Google Scholar 

  • Mercadier C, Vega D, Bastide J (1997) Iprodione degradation by isolated soil microorganisms. FEMS Microbiol Ecol 23:207–215. https://doi.org/10.1111/j.1574-6941.1997.tb00403.x

    Article  CAS  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    CAS  PubMed  Google Scholar 

  • Moawad H, El-Rahim WMA, Shawky H, Higazy AM, Daw ZY (2014) Evidence of fungicides degradation by Rhizobia. Agric Sci 5:618–624

    CAS  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaale-niiPYR-1. Appl Environ Microbiol 70:340–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mordocco A, Kuek C, Jenkins R (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzym Microb Technol 25:530–536

    CAS  Google Scholar 

  • Mulbry W, Kearney PC (1991) Degradation of pesticides by micro-organisms and the potential for genetic manipulation. Crop Prot 10:334–346

    CAS  Google Scholar 

  • Nadeau LJ, Menn F-M, Breen A, Sayler GS (1994) Aerobic degradation of l,l,l-trichloro-2,2-bis(4-chloropheny1)ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nag D, Singh CC, Senon S (1977) Epilepsy endemic due to benzene hexachloride. Trop Geogr Med 29:229–232

    CAS  PubMed  Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, de Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (8-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. Strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev Int Contam Ambient 26(1):27–38

    Google Scholar 

  • Ozaki M, Tanaka Y, Kuwatsuka S (1986) Reductive degradation of isouron in soils under anaerobic conditions. J Pestic Sci 11:409–413

    CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, De Rito C, Gray A, Gannon D, Snap JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13 C-labelled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13 C labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  • PAN-UK (2003) Current pesticide spectrum, global use and major concerns. http://www.pan-uk.org/briefing/SIDA_Fil/Chap1.htm. January 18, 2003

  • Parekh NR, Walker A, Roberts SJ, Welch SJ (1994) Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil. J Appl Bacteriol 77:467–475

    CAS  PubMed  Google Scholar 

  • Parsek MR, Mc Fall SM, Chakrabarty AM (1995) Microbial degradation of toxic environment pollution: ecological and evolutionary consideration. Int Biodeterior Biodegrad 35:175–188

    CAS  Google Scholar 

  • Patil KC, Matsumura F, Boush GM (1970) Degradation of endrin, aldrin, and DDT by soil microorganisms. J Appl Microbiol 19(5):879–881. ISSN 1365-2672

    CAS  Google Scholar 

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 7:229–252. https://doi.org/10.1007/s10668-005-7314-2

    Article  Google Scholar 

  • Pino N, Penuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831

    CAS  Google Scholar 

  • Popp J (2011) Cost-benefit analysis of crop protection measures. J Verbr Lebensm 6:105–112. https://doi.org/10.1007/s00003-011-0677-4

    Article  Google Scholar 

  • Porto AM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Bio-degradation of pesticides, pesticides in modern world-pesticides use and management. [online]. http://www.intechopen.com/books/pesticides-in-the-modern-world-pesticides-use-and-management/biodegradation-of-pesticides

  • Qiao L, Wang J (2010) Biodegradation characterization of a pyridine-degrading strain. Qinghua Daxue Xuebao 50(6):869–872

    CAS  Google Scholar 

  • Rani NL, Kumari LD (1994) Degradation of methylparathion by Pseudomonas putida. Can J Microbiol 40:1000–1006

    CAS  PubMed  Google Scholar 

  • Ray AS, Mondal J (2017) Potential applications of various fungal and bacterial agents in decontamination of agricultural soils: an overview. IOSR J Agric Vet Sci 10:40–47

    Google Scholar 

  • Richins R, Mulchandani A, Chen W (2000) Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnol Bioeng 69:591–596

    CAS  PubMed  Google Scholar 

  • Ripp S, Nivens DE, Werner C, Sayler GS (2000) Biolumines-cent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release. Appl Microbiol Biotechnol 53:736–741

    CAS  PubMed  Google Scholar 

  • Rodrigues JLM, Kachel A, Aiello MR, Quensen JF, Maltseva OV, Tsio TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Appl Environ Microbiol 72(4):2476–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseaux S, Hartmann A, Lagacherie B, Piutti S, Andreux F, Soulas G (2003) Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Cit1, in four different soils: effects of different inoculum densities. Chemosphere 51:569–576

    CAS  PubMed  Google Scholar 

  • Sabourmoghaddam N, Zakaria MP, Omar D (2015) Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. J Saudi Soc Agric Sci 14(2):182–188. https://doi.org/10.1016/j.jssas.2014.03.002

    Article  Google Scholar 

  • Sadowski MJ, Tong Z, Souza MLD, Wackett LP (1998) AtzC is a new member of the aminohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J Bacteriol 180:152–158

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19:1–20

    CAS  Google Scholar 

  • Schmidt SK (1988) Degradation of juglone by soil bacteria. J Chem Ecol 14(7):1561–1571

    CAS  PubMed  Google Scholar 

  • Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K (2010) Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics 10:1819–1830

    CAS  PubMed  Google Scholar 

  • Scott HD (2000) Soil physics: agricultural and environmental applications, 1st edn. Iowa State University Press, Ames. ISBN 0-8138-2087-1

    Google Scholar 

  • Sene L, Converti A, Secchi GAR, Simão RDCG (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53(2):487–496

    CAS  Google Scholar 

  • Sethunathan N (1989) Chapter 5.2: Biodegradation of pesticides in tropical rice ecosystem. In: Bourdeau P, Haines JA, Klein W, Krishna Murti CR (eds) Ecotoxicology and climate. Wiley, Brisbane

    Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    CAS  PubMed  Google Scholar 

  • Sharef Ibrahim B, Abdelbagi Azhari O, Elsheikh Elsiddig AE, Ahmed Abd Elaziz S, Elsaid Osama G (2013) biodegradation of pendimethalin by three strains of bacteria isolated from pesticide-polluted soils. U K J Agric Sci 21(2):233–252

    Google Scholar 

  • Sharma A, Pankaj, Khati P, Gangola S, Kumar G (2016) Chapter 6: Microbial degradation of pesticides for environmental cleanup. In: Bioremediation of industrial pollutants. GenNext Publication, Lanham, pp 179–205

    Google Scholar 

  • Shirkot CK, Gupta KG (1985) Accelerated Tetramethylthiuram disulfide (TMTD) degradation in soil by inoculation with TMTD-utilizing bacteria. Bull Environ Contam Toxicol 35:354–361. https://doi.org/10.1007/BF01636522

    Article  CAS  PubMed  Google Scholar 

  • Sims GK, O’Loughlin EJ (1989) Degradation of pyridines in the environment. Crit Rev Environ Control 19:309–340

    CAS  Google Scholar 

  • Sims R, Sorensen D, Sims J, Mclean J, Mahmood R, DuPont R, Jurinak J, Wagner K (1986) Contaminated surface soils in-place treatment techniques. Noyes Publications, Park Ridge

    Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    PubMed  PubMed Central  Google Scholar 

  • Singh P, Suri CR, Cameotra SS (2004) Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochem Biophys Res Commun 317:697–702

    CAS  PubMed  Google Scholar 

  • Slater JH, Whittenburg R, Wimpenny JWT (eds) (1983) Microbes in their natural environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Somasundaram L, Coats JR (1990) Influence of pesticide metabolites on the development of enhanced biodegradation. In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. American Chemical Society, Washington, DC

    Google Scholar 

  • Spain JC, Nishino SF (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53:1010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Sauer K, Davis DG, Costerton JW (2002) Biofilms as a complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  PubMed  Google Scholar 

  • Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2, 4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169(7):2950–2955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wacket LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    CAS  PubMed  Google Scholar 

  • Suenaga H, Mitsuoka M, Ura Y, Watanable T, Furukawa K (2001) Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene and alkylbenzenes. J Bacteriol 183:5441–5444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabai MA, Fu M (1992) Extraction of enzymes in soil. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 197–227

    Google Scholar 

  • Talwar MP, Ninnekar HZ (2015) Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM. J Basic Microbiol 55:1–10

    Google Scholar 

  • Tam AC, Behki RM, Khan SU (1987) Isolation and characterisation of an S- ethyl-N,N-dipropylthiocarbamate degrading Arthrobacter strain and evidence for plasmid- associated S-ethyl-N,N-dipropylthiocarbamate degradation. Appl Environ Microbiol 53:1088–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tam AC, Behki RM, Khan SU (1988) Effect of dietholate (R-33865) on the degradation of thiocarbamate herbicides by an EPTC-degrading bacterium. J Agric Food Chem 36:654–657

    CAS  Google Scholar 

  • Teng Y, Wang X, Zhu Y, Chen W, Christie P, Li Z, Luo Y (2017) Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8640-2

    CAS  PubMed  Google Scholar 

  • Tewari L, Saini J, Arti (2012) Bioremediation of pesticides by microorganisms: general aspects and recent advances chapter 2. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publishing House Pvt. Ltd., ND, India, pp 25–48

    Google Scholar 

  • Thatheyus AJ, Selvam ADG (2013) Synthetic pyrethroids: toxicity and biodegradation. J Ecol Environ Sci 1(3):33–36. 10.12691/aees-1-3-2

    Article  CAS  Google Scholar 

  • Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389

    CAS  PubMed  Google Scholar 

  • Tomasek PH, Karns JS (1989) Cloning of a carbofuran hydrolase gene from Achromobacter sp. WMlll and its expression in Gram-negative bacteria. J Bacteriol 171:4038–4044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Top EM, van Daele P, de Saeyer N, Forney LJ (1998) Enhancement of 2,4-dichlorophenoxyaceticacid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie Van Leeuwenhoek 73:87–94

    CAS  PubMed  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96. https://doi.org/10.1016/S0167-8809(96)01096-1

    Article  Google Scholar 

  • Van Herwijnen R, Van de Sande BF, Van der Wielen FWM, Springael D, Govers HAJ, Parsons JR (2003) Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiol Ecol 46:105–111

    PubMed  Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13(4):429–466

    Google Scholar 

  • Wackett LP, Sadowsky MJ, Martinez B, Shapir N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45

    CAS  PubMed  Google Scholar 

  • Wang WD, Niu JL, Cui ZJ (2005) Biodegradation of pesticides: a review. J Heilongj Aug First Land Reclam Univ 17(2):18

    Google Scholar 

  • Wang G, Yue W, Liu Y, Li F, Xiong M, Zhang H (2013) Biodegradation of the neonicotinoid insecticide Acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil. Bioresour Technol 138:359–368. https://doi.org/10.1016/j.biortech.2013.03.193

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Tanaka J, Ando Y (1997) Human mortality in organophosphate poisonings. Vet Hum Toxicol 39:84–85

    CAS  PubMed  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kuma S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    CAS  Google Scholar 

  • Yuan Y, Guo SH, Li FM, Li TT (2013) Effect of an electric field onn-hexadecane microbial degradation in contaminated soil. Int Biodeterior Biodegrad 77:78–84

    CAS  Google Scholar 

  • Zhao HP, Wu QS, Wang L, Zhao XT, Gao HW (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J Hazard Mater 164:863–869

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bighneswar Baliyarsingh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, S.K., Dash, B., Baliyarsingh, B. (2018). Microbial Remediation of Persistent Agro-chemicals by Soil Bacteria: An Overview. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_13

Download citation

Publish with us

Policies and ethics