Membrane Dynamics

  • Rashmi WardhanEmail author
  • Padmshree Mudgal


Singer and Nicolson’s fluid mosaic model formed the basis of dynamic nature of cellular membranes. Molecules in membranes, the lipids, and proteins are in a state of dynamic motion which includes bond-bending, bond-stretching, lateral diffusion, rotation and flip-flop motion. Developments of new fluorescent labeling and imaging techniques have helped in the study of membrane dynamics. In biological membranes, molecular motion is rather restricted as compared to in synthetic liposomes. This is due to many physical barriers present in membranes, which includes the cytoskeleton, membrane–membrane junctions, intramembrane clusters. The RBC membrane provides a perfect example to study the impact of membrane barriers on molecular motion. A fluid membrane is essential for a functional membrane required for survival of a cell. Hence, in microorganisms, plants, poikilotherms, and hibernating animal’s homeoviscous adaptations maintain optimal membrane fluidity for cell survival.


  1. Alonso MA, Millán J (2001) The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci 114:3957–3965 Google Scholar
  2. Ben NG, Giepmans BNG, Sven CD et al (2009) Epithelial cell–cell junctions and plasma membrane domains. Biochim Biophys Acta 1788:820–831Google Scholar
  3. Cario A, Grossi V, Schaeffer P, Oger PM (2015) Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Front Microbiol 6:1152. CrossRefPubMedCentralPubMedGoogle Scholar
  4. Cooper BS, Hammad LA, Montooth KL (2014) Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster. Func Ecol 28(4):886–894CrossRefGoogle Scholar
  5. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081CrossRefPubMedCentralPubMedGoogle Scholar
  6. Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New YorkCrossRefGoogle Scholar
  7. Ho TSY, Rasband MN (2011) Maintenance of neuronal polarity. Dev Neurobiol 71(6):474–482. CrossRefPubMedCentralGoogle Scholar
  8. Jain MK (1979) Molecular motions in biomembranes. Prac INSA 45A(6):558–566Google Scholar
  9. Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK (2011) Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci 36:604–615. CrossRefPubMedGoogle Scholar
  10. Luna EJ, Hitt AL (1991) Cytoskeleton-plasma membrane interactions, Science 258:955–964Google Scholar
  11. Marguet D, Lenne PF, Rigneault H, He HT (2006) Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25(15):3446–3457.
  12. Ritchie K, Iino R, Fujiwara T, Murase K, Kusumi A (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review). Mol Memb Biol 20:13–18CrossRefGoogle Scholar
  13. Sezgin E, Schwille P (2011) Fluorescence techniques to study lipid dynamics. Cold Spring Harb Perspect Biol 2011(3):a009803Google Scholar
  14. Tahirovic S, Bradke F (2009) Neuronal polarity. Cold Spring Harb Perspect Biol 1(3):a001644. CrossRefPubMedCentralPubMedGoogle Scholar
  15. Trimble WS, Grinstein S (2015) Barriers to the free diffusion of proteins and lipids in the plasma membrane. J Cell Biol 208(3):259–271. CrossRefPubMedCentralPubMedGoogle Scholar
  16. Zhang R, Zhang CY, Zhao Q et al (2013) Spectrin: structure, function and disease. Sci China Life Sci 56:1076–1085CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiochemistryShivaji CollegeNew DelhiIndia
  2. 2.Department of BiochemistryDaulat Ram College, University of DelhiNew DelhiIndia

Personalised recommendations