HIPEC Methodology, Comparison of Techniques, and Drug Regimens: Is There a Need for Standardization?

  • K. Van der Speeten
  • L. Lemoine


The introduction of cytoreductive surgery and hyperthermic intraperitoneal peroperative chemotherapy has greatly improved the prognosis of patients with peritoneal carcinomatosis in both phase II and III trials. A clear pharmacologic and clinical rationale for this treatment strategy has been demonstrated. Whereas the cytoreductive surgery has been highly standardized, reproducible, and predictable, the same cannot be said of the intraperitoneal chemotherapy modalities. A staggering variety of chemotherapy application techniques and regimens has been reported. Most of these regimens have been based on extrapolation of systemic chemotherapy data. An urgent need for more standardization of the intraperitoneal chemotherapy modalities is needed. The aim of this manuscript is to review the rationale, variables, and modalities of intraperitoneal chemotherapy. At the same time, it seeks to offer guidance on the current intraperitoneal chemotherapy regimens and potential directions toward more standardization.


HIPEC methodology HIPEC drug regimens HIPEC protocols Bidirectional chemotherapy HIPEC EPIC NIPS BIC Pharmacology Dosimetry Peritoneal carcinomatosis 





  Area under the curve


Bidirectional intraoperative chemotherapy


Body surface area


Cytoreductive surgery


Early postoperative intraperitoneal chemotherapy


Hyperthermic intraperitoneal peroperative chemotherapy






Mass transfer coefficient


Neoadjuvant intraperitoneal and systemic chemotherapy


Pressurized intraperitoneal aerosol chemotherapy


Peritoneal metastases


Sequenced postoperative intraperitoneal chemotherapy



Lemoine L is supported by the Agency for Innovation by Science and Technology (IWT) in Brussels, Belgium. Lemoine L is a researcher for the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital, Belgium.

Conflict of Interest Statement

No potential conflicts of interest.


  1. 1.
    Sheperd NA, Baxter KJ, Sharon BL. The prognostic importance of peritoneal involvement in colonic cancer: a prospective evaluation. Gastroenterology. 1997;112(4):1096–102.CrossRefGoogle Scholar
  2. 2.
    Yang SH, Lin JK, Lai CR, Chen CC, Li AF, Liang WY, et al. Risk factors for peritoneal dissemination of colorectal cancer. J Surg Oncol. 2004;87(4):167–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Noura S, Ohue M, Seki Y, Yano M, Ishikawa O, Kameyama M. Long-term prognostic value of conventional peritoneal lavage cytology in patients undergoing curative colorectal cancer resection. Dis Colon Rectum. 2009;52(7):1312–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Ribeiro U Jr, Safatle-Ribeiro AV, Zilberstein B, Mucerino D, Yagi OK, Bresciani CC, et al. Does the intraoperative peritoneal lavage cytology add prognostic information in patients with potentially curative gastric resection? J Gastrointest Surg. 2006;10(2):170–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamamoto S, Akasu T, Fujita S, Moriya Y. Long-term prognostic value of conventional peritoneal cytology after curative resection for colorectal carcinoma. Jpn J Clin Oncol. 2003;33(1):33–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Lennon AM, Mulcahy HE, Hyland J, Lowry C, White A, Fennelly D, et al. Peritoneal involvement is a powerful prognostic indicator in stage II colonic cancer. Gastroenterology. 2002;122S(4):A41.Google Scholar
  7. 7.
    Hase K, Ueno H, Kuranaga N, Utsonomiya K, Kanabe S, Mochizuki H. Intraperitoneal exfoliated cancer cells in patients with colorectal cancer. Dis Colon Rectum. 1998;41(9):1134–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Hansen E, Wolff N, Knuechel R, Ruschoff J, Hofstaedter F, Taeger K. Tumor cells in blood shed from the surgical field. Arch Surg. 1995;130(4):387–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenshein NB, Leichner PK, Vogelsang G. Radiocolloids in the treatment of ovarian cancer. Obstet Gynecol. 1979;34(9):708–20.Google Scholar
  10. 10.
    Meyers MA. The spread and localization of acute intraperitoneal effusions. Radiology. 1970;95(3):547–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Meyers MA. Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Therapy, Nucl Med. 1973;119(1):198–206.CrossRefGoogle Scholar
  12. 12.
    Carmignani PC, Tessa AS, Bromley CM, Sugarbaker PH. Intraperitoneal cancer dissemination: mechanisms of the patters of spread. Cancer Metastasis Rev. 2003;22(4):465–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Patel H, Le Marer N, Wharton RQ, Khan ZA, Araia R, Glover C, et al. Clearance of circulating tumor cells after excision of primary colorectal cancer. Ann Surg. 2002;235(2):226–31.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tanida O, Kaneshima S, Iitsuka Y, Kuda H, Kiyasu Y, Koga S. Viability of intraperitoneal free cancer cells in patients with gastric cancer. Acta Cytol. 1982;26(5):681–7.PubMedGoogle Scholar
  15. 15.
    Sugarbaker PH. Strategies for the prevention and treatment of peritoneal carcinomatosis from gastrointestinal cancer. Cancer Investig. 2005;23(2):155–72.CrossRefGoogle Scholar
  16. 16.
    Kodera Y, Nakanishi H, Ito S, Yamamura Y, Kanemitsu Y, Shimizu Y, et al. Quantitative detection of disseminated free cancer cells in peritoneal washes with real-time reverse transcriptase-polymerase chain reaction: a sensitive predictor of outcome for patients with gastric carcinoma. Ann Surg. 2002;235(4):499–506.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ceelen WP, Morris S, Paraskeva P, Pattyn P. Surgical trauma, minimal residual diseaese and locoregional cancer recurrence. Cancer Treat Res. 2007;134:51–69.PubMedGoogle Scholar
  18. 18.
    van der Bij GJ, Oosterling SJ, Beelen RH, Meijer S, Coffey JC, van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg. 2009;249(5):727–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Oosterling SJ, van der Bij GJ, van Egmond M, van der Sijp JR. Surgical trauma and peritoneal recurrence of colorectal carcinoma. Eur J Surg Oncol. 2005;31(1):29–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Jayne D. Molecular biology of peritoneal carcinomatosis. Cancer Treat Res. 2007;134:21–33.PubMedGoogle Scholar
  21. 21.
    Ceelen WP, Bracke ME. Peritoneal minimal residual disease in colorectal cancer: mechanisms, prevention and treatment. Lancet Oncol. 2009;10(1):72–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Spratt JD, Adcock RA, Muskovin M, Sherrill W, McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 1980;40(2):256–60.PubMedGoogle Scholar
  23. 23.
    Koga S, Shimizu N, Maeta M, Hamazoe R, Izumi A. Application of heat combined with antineoplastic agent administration in the treatment of cancer (with special reference to malignancy of the digestive system). Gan To Kagaku Ryoho. 1983;10(2pt2):358–65.PubMedGoogle Scholar
  24. 24.
    Speyer JL, Myers CE. The use of peritoneal dialysis for delivery of chemotherapy to intraperitoneal malignancies. Recent Results Cancer Res. 1980;74:264–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sugarbaker PH. Peritonectomy procedures. Surg Oncol Clin N Am. 2003;12(3):703–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Elias D, Bonnay M, Puizillou JM, Antoun S, Demirdjian S, El OA, et al. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13(2):267–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Verwaal VJ, van Ruth S, de Bree E, van Sloothen GW, van Tinteren H, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21(20):3737–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15(9):2426–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Glehen O, Kwiatkowski F, Sugarbaker PH, Elias D, Levine EA, De Simone M, et al. Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol. 2004;22(16):3284–92.PubMedCrossRefGoogle Scholar
  30. 30.
    Yan TD, Black D, Savady R, Sugarbaker PH. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol. 2006;24(24):4011–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Yan TD, Black D, Savady R, Sugarbaker PH. A systematic review on the efficacy of cytoreductive surgery and perioperative intraperitoneal chemotherapy from pseudomyxoma peritonei. Ann Surg Oncol. 2007;14(2):484–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Yan TD, Welch L, Black D, Sugarbaker PH. A systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for diffuse malignancy peritoneal mesothelioma. Ann Oncol. 2007;18(5):827–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Yan TD, Black D, Sugarbaker PH, Zhu J, Yonemura Y, Petrou G, et al. A systematic review and meta-analysis of the randomized controlled trials on adjuvant intraperitoneal chemotherapy for resectable gastric cancer. Ann Surg Oncol. 2007;14(10):2702–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Yan TD, Deraco M, Baratti D, Kusumura S, Elias D, Glehen O, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27(36):6237–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Bijelic L, Jonson A, Sugarbaker PH. Systematic review of cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis in primary and recurrent ovarian cancer. Ann Oncol. 2007;18(12):1943–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Helm CW, Richard SD, Pan J, Bartlett D, Goodman MD, Hoefer R, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer: first report of the HYPER-O registry. Int J Gynecol Cancer. 2010;20(1):61–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Elias D, Glehen O, Gilly F. Carcinose péritonéles d’origine digestive et primitive. Rapport du 110éme congrès de l’AFC. France: Arnette: Wolters Kluwer; 2008.Google Scholar
  38. 38.
    Glehen O, Gilly FN, Arvieux C, Cotte C, Boutitie F, Mansveldt B, et al. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2010;17(9):2370–7. [Epub ahead of print].PubMedCrossRefGoogle Scholar
  39. 39.
    Elias D, Glehen O, Pocard M, Quenet F, Goéré D, Arvieux C, et al. A comparative study of complete cytoreductive surgery plus intraperitoneal chemotherapy to treat peritoneal dissemination from colon, rectum, small bowel, and nonpseudomyxoma appendix. Ann Surg. 2010;251(5):896–901.PubMedCrossRefGoogle Scholar
  40. 40.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat. 1941;69:439–97.CrossRefGoogle Scholar
  41. 41.
    Dobbie JW. Ultrastructure and pathology of the peritoneal dialysis. In: Gokal R, Nolph K, editors. Textbook of peritoneal dialysis. Dordrecht: Kluwer Academic; 1994. p. 17–45.CrossRefGoogle Scholar
  42. 42.
    Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1–19.PubMedGoogle Scholar
  43. 43.
    Sugarbaker PH. Peritoneum as the first-line of defense in carcinomatosis. J Surg Oncol. 2007;95(2):93–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Flessner M, Henegar J, Bigler S, Genous L. Is the peritoneum a significant barrier in peritoneal dialysis? Perit Dial Int. 2003;23(6):542–9.PubMedGoogle Scholar
  45. 45.
    de Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker PH. Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Pharmacol. 2003;52(2):108–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Jacquet P, Averbach A, Stephens AD, Stuart OA, Chang D, Sugarbaker PH. Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology. 1998;55(2):130–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Stelin G, Rippe BA. Phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 1990;38(3):456–72.CrossRefGoogle Scholar
  48. 48.
    Bettendorf U. Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology. 1978;11(3):111–6.PubMedGoogle Scholar
  49. 49.
    Bettendorf U. Electronmicroscopic studies on the peritoneal resorption of intraperitoneally injected latex particles via the diaphragmatic lymphatics. Lymphology. 1979;12(2):66–70.PubMedGoogle Scholar
  50. 50.
    Katz MH, Barone RM. The rationale of perioperative intraperitoneal chemotherapy in the treatment of peritoneal surface malignancies. Surg Oncol Clin N Am. 2003;12(3):673–88.PubMedCrossRefGoogle Scholar
  51. 51.
    Dedrick RL, Myers CE, Bungay PM, De Vita VT Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62(1):1–11.PubMedGoogle Scholar
  52. 52.
    Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Phys. 1985;248(3 Pt 2):F425–35.Google Scholar
  53. 53.
    Dedrick RL. Theoretical and experimental bases of intraperitoneal chemotherapy. Semin Oncol. 1985;12(3 Suppl 4):1–6.PubMedGoogle Scholar
  54. 54.
    Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288(3):F433–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Flessner MF. Intraperitoneal drug therapy: physical and biological principles. Cancer Treat Res. 2007;134:131–52.PubMedGoogle Scholar
  56. 56.
    Zylberberg B, Dormont D, Janklewicz S, Darai E, Bretel JJ, Poncelet C, et al. Response to neo-adjuvant intraperitoneal and intravenous immunochemotherapy followed by interval secondary cytoreduction in stage IIIc ovarian cancer. Eur J Gynaecol Oncol. 2001;22:40–5.PubMedGoogle Scholar
  57. 57.
    Yonemura Y, Ishibashi H, Hirano M, Mizumoto A, Takeshita K, Noguchi K, et al. Effects of neoadjuvant laparoscopic hyperthermic intraperitoneal chemotherapy and neoadjuvant intraperitoneal/systemic chemotherapy on peritoneal metastases from gastric cancer. Ann Surg Oncol. 2016;24(2):478–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Yonemura Y, Elnemr A, Endou Y, Ishibashi H, Mizumoto A, Miura M, et al. Effects of neoadjuvant intraperitoneal/systemic chemotherapy (bidirectional chemotherapy) for the treatment of patients with peritoneal metastasis from gastric cancer. Int J Surg Oncol. 2012;2012:8.Google Scholar
  59. 59.
    Esquivel J, Vidal-Jove J, Steves M, Sugarbaker P. Morbidity and mortality of cytoreductive surgery and intraperitoneal chemotherapy. Surgery. 1993;113:631–6.PubMedGoogle Scholar
  60. 60.
    Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Markman M, Bundy BN, Alberts DS, Fowler JM, Clark-Pearson DL, Carson LF, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an inter-group study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19(4):1001–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Alberts DS, Liu PY, Hannigan EV, O’Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Gardner SN. A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and – non-specific drugs. Cancer Res. 2000;60(5):1417–25.PubMedGoogle Scholar
  64. 64.
    Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemothera-py. Surg Oncol Clin N Am. 2003;12(3):813–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Pestieau SR, Schnake KJ, Stuart OA, Sugarbaker PH. Impact of carrier solutions on the pharmacokinetics of intraperitoneal chemotherapy. Cancer Chemother Pharmacol. 2001;47(3):269–76.PubMedCrossRefGoogle Scholar
  66. 66.
    Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol. 2003;52(5):405–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Kondo A, Maeta M, Oka A, Tsujitani S, Ikeguchi M, Kaibara N. Hypotonic intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in mice. Br J Cancer. 1996;73(10):1166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tsujitani S, Oka A, Kondo A, Katano K, Oka S, Saito H, et al. Administration in a hypotonic solution is preferable to dose escalation in intraperitoneal cispla-tin chemotherapy for peritoneal carcinomatosis in rats. Oncology. 1999;57(1):77–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Elias D, El Otmany A, Bonnay M, Paci A, Ducreux M, Antoun S, et al. Hu-man pharmacokinetic study of heated intraperitoneal oxaliplatin in increasingly hypotonic solutions after complete resection of peritoneal carcinomatosis. Oncology. 2002;63(4):346–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89(7):480–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Esquis P, Consolo D, Magnin G, Pointaire P, Moretto P, Ysna MD, et al. High intraabdominal pressure enhances the penetration and antitumor effect of intra-peritoneal cisplatin on experimental carcinomatosis. Ann Surg. 2006;244(1):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jacquet P, Stuart OA, Chang D, Sugarbaker PH. Effect of intra-abdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intra-peritoneal administration. Anti-Cancer Drugs. 1996;7(5):596–603.PubMedCrossRefGoogle Scholar
  73. 73.
    Gesson-Paute A, Ferron G, Thomas F, de Lara EC, Chatelut E, Querleu D. Pharmacokinetics of oxaliplatin during open versus laparoscopically assisted heated intraoperative chemotherapy (HIPEC): an experimental study. Ann Surg Oncol. 2008;15(1):339–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Thomas F, Ferron G, Gesson-Paute A, Hristova M, Lochon I, Chatelut E. Increased tissue diffusion of oxaliplatin during laparoscopically assisted versus open heated intraoperative intraperitoneal chemotherapy (HIPEC). Ann Surg Oncol. 2008;15(12):3623–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Garofalo A, Valle M, Garcia J, Sugarbaker PH. Laparoscopic intraperitoneal hyperthermic chemotherapy for palliation of debilitating malignant ascites. Eur J Surg Oncol. 2006;32(6):682–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Valle M, Van der Speeten K, Garofalo A. Laparoscopic hyperthermic peroperative chemotherapy (HIPEC) in the management of refractory malignant ascites: a multi-institutional analysis in 52 patients. J Surg Oncol. 2009;100(4):331–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Facchiano E, Scaringi S, Kianmanesh R, Sabate JM, Castel B, Flamant Y, et al. Laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) for the treatment of malignant ascites secondary to unresectable peritoneal carcinomato-sis from advanced gastric cancer. Eur J Surg Oncol. 2008;34(2):154–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Patriti A, Cavazzoni E, Graziosi L, Pisciaroli A, Luzi D, Gullà N, et al. Successful palliation of malignant ascites from peritoneal mesothelioma by laparoscopic intraperitoneal hyperthermic chemotherapy. Surg Laparosc Endosc Percutan Tech. 2008;18(4):426–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Tempfer CB. Pressurized intraperitoneal aerosol chemotherapy as an innovative approach to treat peritoneal carcinomatosis. Med Hypotheses. 2015;85(4):480–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Solass W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc. 2012;26(7):1849–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Solass W, Herbette A, Schwarz T, Hetzel A, Sun JS, Dutreix M, et al. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination with capnoperitoneum: proof of concept. Surg Endosc. 2012;26(3):847–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Solass W, Kerb R, Murdter T, Giger-Pabst U, Strumberg D, Tempfer C, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Solass W, Giger-Pabst U, Zieren J, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC): occupational health and safety aspects. Ann Surg Oncol. 2013;20(11):3504–11.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tempfer CB, Winnekendonk G, Solass W, Horvat R, Giger-Pabst U, Zieren J, et al. Pressurized intraperitoneal aerosol chemotherapy in women with recurrent ovarian cancer: a phase 2 study. Gynecol Oncol. 2015;137(2):223–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA. Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2013;20(7):2311–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Robella M, Vaira M, De Simone M. Safety and feasibility of pressurized intraperitoneal aerosol chemotherapy (PIPAC) associated with systemic chemotherapy: an innovative approach to treat peritoneal carcinomatosis. World J Surg Oncol. 2016;14(1):128.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Khosrawipour V, Khosrawipour T, Diaz-Carballo D, Forster E, Zieren J, Giger-Pabst U. Exploring the spatial drug distribution pattern of pressurized Intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2016;23(4):1220–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Demtroder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. Color Dis. 2016;18(4):364–71.CrossRefGoogle Scholar
  89. 89.
    Tempfer CB, Solass W, Buerkle B, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in a woman with pseudomyxoma peritonei: a case report. Gynecol Oncol Rep. 2014;10:32–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kakchekeeva T, Demtroder C, Herath NI, Griffiths D, Torkington J, Solass W, et al. In vivo feasibility of electrostatic precipitation as an adjunct to pressurized intraperitoneal aerosol chemotherapy (ePIPAC). Ann Surg Oncol. 2016;23(Suppl 5):592–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sticca RP, Dach BW. Rationale for hyperthermia with intraoperative intraperitoneal chemotherapy agents. Surg Oncol Clin N Am. 2003;12:689–701.PubMedCrossRefGoogle Scholar
  92. 92.
    Sugarbaker PH. Laboratory and clinical basis for hyperthermia as a component of intracavitary chemotherapy. Int J Hyperth. 2007;23:431–42.CrossRefGoogle Scholar
  93. 93.
    Jacquet P, Averbach A, Stuart OA, Chang D, Sugarbaker PH. Hyperthermic intraperitoneal doxorubicin: pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother Pharmacol. 1998;41:147–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Young JS, Lumsden CE, Stalker AL. The significance of the tissue pressure of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol. 1950;62:313–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, Messmer K. Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 1992;52:487–90.PubMedGoogle Scholar
  96. 96.
    Sugarbaker PSO, Bijelic L, et al. Hyperthermic intraperitoneal gemcitabine chemotherapy for patients with resected pancreatic cancer: clinical pharmacologic data. Curr Top Pharmacol. 2014;18:81–92.Google Scholar
  97. 97.
    Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperth. 1999;15:79–107.CrossRefGoogle Scholar
  98. 98.
    Sugarbaker PH. Parietal peritonectomy. Ann Surg Oncol. 2012;19:1250.PubMedCrossRefGoogle Scholar
  99. 99.
    Konate A, Poupon J, Villa A, Garnier R, Hasni-Pichard H, Mezzaroba D, Fernandez G, Pocard M. Evaluation of environmental contamination by platinum and exposure risks for healthcare workers during a heated intraperitoneal perioperative chemotherapy (HIPEC) procedure. J Surg Oncol. 2011;103:6–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Schenk KE, Schierl R, Angele M, Burkhart-Reichl A, Glockzin G, Novotny A, Nowak D. Cisplatin and oxaliplatin surface contamination in intensive care units (ICUs) and hospital wards during attendance of HIPEC patients. Int Arch Occup Environ Health. 2016;89(6):991–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Villa AF, El Balkhi S, Aboura R, Sageot H, Hasni-Pichard H, Pocard M, Elias D, Joly N, Payen D, Blot F, Poupon J, Garnier R. Evaluation of oxaliplatin exposure of healthcare workers during heated intraperitoneal perioperative chemotherapy (HIPEC). Ind Health. 2015;53:28–37.PubMedCrossRefGoogle Scholar
  102. 102.
    Capron A, Destree J, Jacobs P, Wallemacq P. Permeability of gloves to selected chemotherapeutic agents after treatment with alcohol or isopropyl alcohol. Am J Health Syst Pharm. 2012;69:1665–1670. [PMID: 22997120. Scholar
  103. 103.
    Ferron G, Simon L, Guyon F, Glehen O, Goere D, Elias D, Pocard M, Gladieff L, Bereder JM, Brigand C, Classe JM, Guilloit JM, Quenet F, Abboud K, Arvieux C, Bibeau F, De Chaisemartin C, Delroeux D, Durand-Fontanier S, Goasguen N, Gouthi L, Heyd B, Kianmanesh R, Leblanc E, Loi V, Lorimier G, Marchal F, Mariani P, Mariette C, Meeus P, Msika S, Ortega-Deballon P, Paineau J, Pezet D, Piessen G, Pirro N, Pomel C, Porcheron J, Pourcher G, Rat P, Regimbeau JM, Sabbagh C, Thibaudeau E, Torrent JJ, Tougeron D, Tuech JJ, Zinzindohoue F, Lundberg P, Herin F, Villeneuve L, BIG-RENAPE Working Group. Professional risks when carrying out cytoreductive surgery for peritoneal malignancy with hyperthermic intraperitoneal chemotherapy (HIPEC): a French multicentric survey. Eur J Surg Oncol. 2015;41:1361–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Boutros C, Somasundar P, Espat NJ. Early results on the use of biomaterials as adjuvant to abdominal wall closure following cytoreduction and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2010;8:72.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, Trillet-Lenoir V, Sayag-Beaujard AC, Francois Y, Vignal J, Gilly FN. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10:863–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Kusamura S, Younan R, Baratti D, Costanzo P, Favaro M, Gavazzi C, Deraco M. Cytoreductive surgery followed by intraperitoneal hyperthermic perfusion: analysis of morbidity and mortality in 209 peritoneal surface malignancies treated with closed abdomen technique. Cancer. 2006;106:1144–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Ortega-Deballon P, Facy O, Jambet S, Magnin G, Cotte E, Beltramo JL, Chauffert B, Rat P. Which method to deliver hyperthermic intraperitoneal chemotherapy with oxaliplatin? An experimental comparison of open and closed techniques. Ann Surg Oncol. 2010;17:1957–63.PubMedCrossRefGoogle Scholar
  108. 108.
    Facy O, Combier C, Poussier M, Magnin G, Ladoire S, Ghiringhelli F, Chauffert B, Rat P, Ortega-Deballon P. High pressure does not counterbalance the advantages of open techniques over closed techniques during heated intraperitoneal chemotherapy with oxaliplatin. Surgery. 2015;157:72–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Elias D, Antoun S, Goharin A, Otmany AE, Puizillout JM, Lasser P. Research on the best chemohyperthermia technique of treatment of peritoneal carcinomatosis after complete resection. Int J Surg Investig. 2000;1:431–9.PubMedGoogle Scholar
  110. 110.
    Stephens AD, Alderman R, Chang D, Edwards GD, Esquivel J, Sebbag G, Steves MA, Sugarbaker PH. Morbidity and mortality analysis of 200 treatments with cytoreductive surgery and hyperthermic intraoperative intraperitoneal chemotherapy using the coliseum technique. Ann Surg Oncol. 1999;6:790–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Halkia E, Tsochrinis A, Vassiliadou DT, Pavlakou A, Vaxevanidou A, Datsis A, Efstathiou E, Spiliotis J. Peritoneal carcinomatosis: intraoperative parameters in open (coliseum) versus closed abdomen HIPEC. Int J Surg Oncol. 2015;2015:6.Google Scholar
  112. 112.
    Fujimura T, Yonemura Y, Fushida S, Urade M, Takegawa S, Kamata T, Sugiyama K, Hasegawa H, Katayama K, Miwa K, et al. Continuous hyperthermic peritoneal perfusion for the treatment of peritoneal dissemination in gastric cancers and subsequent second-look operation. Cancer. 1990;65:65–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Yonemura Y, Bandou E, Kinoshita K, Kawamura T, Takahashi S, Endou Y, Sasaki T. Effective therapy for peritoneal dissemination in gastric cancer. Surg Oncol Clin N Am. 2003;12:635–48.PubMedCrossRefGoogle Scholar
  114. 114.
    Hirose K, Katayama K, Iida A, Yamaguchi A, Nakagawara G, Umeda S, Kusaka Y. Efficacy of continuous hyperthermic peritoneal perfusion for the prophylaxis and treatment of peritoneal metastasis of advanced gastric cancer: evaluation by multivariate regression analysis. Oncology. 1999;57:106–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Benoit L, Cheynel N, Ortega-Deballon P, Giacomo GD, Chauffert B, Rat P. Closed hyperthermic intraperitoneal chemotherapy with open abdomen: a novel technique to reduce exposure of the surgical team to chemotherapy drugs. Ann Surg Oncol. 2008;15:542–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Rat P, Benoit L, Cheynel N, Osmak L, Favoulet P, Peschaud F, Chauffert B, Favre JP. Intraperitoneal chemo-hyperthermia with “overflow” open abdomen. Ann Chir. 2001;126:669–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Froysnes IS, Larsen SG, Spasojevic M, Dueland S, Flatmark K. Complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastasis in Norway: prognostic factors and oncologic outcome in a national patient cohort. J Surg Oncol. 2016;114(2):222–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Sugarbaker PH, Graves T, DeBruijn EA, Cunliffe WJ, Mullins RE, Hull WE, et al. Early postoperative intraperitoneal chemotherapy as an adjuvant therapy to surgery for peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies. Cancer Res. 1990;50(18):5790–4.PubMedGoogle Scholar
  119. 119.
    Mahteme H, von Heideman A, Grundmark B, Tholander B, Pahlman L, Glimelius B, et al. Heterogeneous activity of cytotoxic drugs in patient samples of peritoneal carcinomatosis. Eur J Surg Oncol. 2008;34(5):547–52.PubMedCrossRefGoogle Scholar
  120. 120.
    Cashin PH, Mahteme H, Graf W, Karlsson H, Larsson R, Nygren P. Activity ex vivo of cytotoxic drugs in patient samples of peritoneal carcinomatosis with special focus on colorectal cancer. BMC Cancer. 2013;13:435.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Levine EA, Blazer DG, Kim MK, Shen P, Stewart JH, Guy C, et al. Gene expression profiling of peritoneal metastases from appendiceal and colon cancer demonstrates unique biologic signatures and predicts patient outcomes. J Am Coll Surg. 2012;214(4):599–606. discussion -7.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Fujishima Y, Goi T, Kimura Y, Hirono Y, Katayama K, Yamaguchi A. MUC2 protein expression status is useful in assessing the effects of hyperthermic intraperitoneal chemotherapy for peritoneal dissemination of colon cancer. Int J Oncol. 2012;40(4):960–4.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Stewart JH, Shen P, Russell G, Fenstermaker J, McWilliams L, Coldrun FM, et al. A phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and appendiceal cancers. Ann Surg Oncol. 2008;15(8):2137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Elias D, Raynard B, Bonnay M, Pocard M. Heated intra-operative intraperitoneal oxaliplatin alone and in combination with intraperitoneal irinotecan: pharmacologic studies. Eur J Surg Oncol. 2006;32(6):607–13.PubMedCrossRefGoogle Scholar
  125. 125.
    Pomel C, Ferron G, Lorimier G, Rey A, Lhomme C, Classe JM, et al. Hyperthermic intra-peritoneal chemotherapy using oxaliplatin as consolidation therapy for advanced epithelial ovarian carcinoma. Results of a phase II prospective multicentre trial. CHIPOVAC study. Eur J Surg Oncol. 2010;36(6):589–93.PubMedCrossRefGoogle Scholar
  126. 126.
    Chalret du Rieu Q, White-Koning M, Picaud L, Lochon I, Marsili S, Gladieff L, et al. Population pharmacokinetics of peritoneal, plasma ultrafiltrated and protein-bound oxaliplatin concentrations in patients with disseminated peritoneal cancer after intraperitoneal hyperthermic chemoperfusion of oxaliplatin following cytoreductive surgery: correlation between oxaliplatin exposure and thrombocytopenia. Cancer Chemother Pharmacol. 2014;74(3):571–82.PubMedCrossRefGoogle Scholar
  127. 127.
    Charrier T, Passot G, Peron J, Maurice C, Gocevska S, Quenet F, et al. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy with oxaliplatin increases the risk of postoperative hemorrhagic complications: analysis of predictive factors. Ann Surg Oncol. 2016;23(7):2315–22.PubMedCrossRefGoogle Scholar
  128. 128.
    De Somer F, Ceelen W, Delanghe J, De Smet D, Vanackere M, Pattyn P, et al. Severe hyponatremia, hyperglycemia, and hyperlactatemia are associated with intraoperative hyperthermic intraperitoneal chemoperfusion with oxaliplatin. Perit Dial Int. 2008;28(1):61–6.PubMedGoogle Scholar
  129. 129.
    Jerremalm E, Hedeland M, Wallin I, Bondesson U, Ehrsson H. Oxaliplatin degradation in the presence of chloride: identification and cytotoxicity of the monochloro monooxalato complex. Pharm Res. 2004;21(5):891–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Mehta AM, Van den Hoven JM, Rosing H, Hillebrand MJ, Nuijen B, Huitema AD, et al. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int J Pharm. 2015;479(1):23–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Fujita T, Tamura T, Yamada H, Yamamoto A, Muranishi S. Pharmacokinetics of mitomycin C (MMC) after intraperitoneal administration of MMC-gelatin gel and its anti-tumor effects against sarcoma-180 bearing mice. J Drug Target. 1997;4(5):289–96.PubMedCrossRefGoogle Scholar
  132. 132.
    Van der Speeten K, Stuart OA, Chang D, Mahteme H, Sugarbaker PH. Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemother Pharmacol. 2011;68(1):147–56.PubMedCrossRefGoogle Scholar
  133. 133.
    Mohamed F, Cecil T, Moran B, Sugarbaker P. A new standard of care for the management of peritoneal surface malignancy. Curr Oncol. 2011;18(2):e84–96.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Levine EA, Stewart JH, Shen P, Russell GB, Loggie BL, Votanopoulos KI. Intraperitoneal chemotherapy for peritoneal surface malignancy: experience with 1,000 patients. J Am Coll Surg. 2014;218(4):573–85.PubMedCrossRefGoogle Scholar
  135. 135.
    de Bree E, Tsiftsis DD. Experimental and pharmacokinetic studies in intraperitoneal chemotherapy: from laboratory bench to bedside. Recent Results Cancer Res. 2007;169:53–73Google Scholar
  136. 136.
    Witkamp A. Dose finding study of hyperthermic intraperitoneal chemotherapy with mitomycin C in patients with carcinosis of colorectal origin. Eur J Surg Oncol. 1998;24:18.Google Scholar
  137. 137.
    Turaga K, Levine E, Barone R, Sticca R, Petrelli N, Lambert L, et al. Consensus guidelines from the American Society of peritoneal surface malignancies on standardizing the delivery of hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer patients in the United States. Ann Surg Oncol. 2014;21(5):1501–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rat. Am J Med Sci. 1988;295(5):453–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Elias DM, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 2003;12(3):755–69, xiv.PubMedCrossRefGoogle Scholar
  140. 140.
    Sugarbaker PH, Stuart OA, Carmignani CP. Pharmacokinetic changes induced by the volume of chemotherapy solution in patients treated with hyperthermic intraperitoneal mitomycin C. Cancer Chemother Pharmacol. 2006;57(5):703–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Mas-Fuster MI, Ramon-Lopez A, Nalda-Molina R. Importance of standardizing the dose in hyperthermic intraperitoneal chemotherapy (HIPEC): a pharmacodynamic point of view. Cancer Chemother Pharmacol. 2013;72(1):273–4.PubMedCrossRefGoogle Scholar
  142. 142.
    Elias D, Gilly F, Boutitie F, Quenet F, Bereder JM, Mansvelt B, Lorimier G, Dubè P, Glehen O. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28(1):63–8. Epub 2009 Nov 16. Erratum in: J Clin Oncol. 2010 Apr 1;28(10):1808.PubMedCrossRefGoogle Scholar
  143. 143.
    Hompes D, D’Hoore A, Wolthuis A, Fieuws S, Mirck B, Bruin S, Verwaal V. The use of oxaliplatin or mitomycin C in HIPEC treatment for peritoneal carcinomatosis from colorectal cancer: a comparative study. J Surg Oncol. 2014;109(6):527–32. Epub 2013 Dec 28.PubMedCrossRefGoogle Scholar
  144. 144.
    Prada-Villaverde A, Esquivel J, Lowy AM, Markman M, Chua T, Pelz J, Baratti D, Baumgartner JM, Berri R, Bretcha-Boix P, Deraco M, Flores-Ayala G, Glehen O, Gomez-Portilla A, González-Moreno S, Goodman M, Halkia E, Kusamura S, Moller M, Passot G, Pocard M, Salti G, Sardi A, Senthil M, Spiliotis J, Torres-Melero J, Turaga K, Trout R. The American Society of peritoneal surface malignancies evaluation of HIPEC with mitomycin C versus oxaliplatin in 539 patients with colon cancer undergoing a complete cytoreductive surgery. Surg Oncol. 2014;110(7):779–85. Epub 2014 Aug 2.CrossRefGoogle Scholar
  145. 145.
    Leung V, Huo YR, Liauw W, Morris DL. Oxaliplatin versus mitomycin C for HIPEC in colorectal cancer peritoneal carcinomatosis. Eur J Surg Oncol. 2017;43(1):144–9. Epub 2016 Oct 13.PubMedCrossRefGoogle Scholar
  146. 146.
    Los G, Mutsaers PH, van der Vijgh WJ, Baldew GS, de Graaf PW, McVie JG. Direct diffusion of cis-diamminedichloroplatinum(II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res. 1989;49(12):3380–4.PubMedGoogle Scholar
  147. 147.
    Conti M, De Giorgi U, Tazzari V, Bezzi F, Baccini C. Clinical pharmacology of intraperitoneal cisplatin-based chemotherapy. J Chemother. 2004;16(Suppl 5):23–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Gladieff L, Chatelut E, Dalenc F, Ferron G. Pharmacological bases of intraperitoneal chemotherapy. Bull Cancer. 2009;96(12):1235–42.PubMedGoogle Scholar
  149. 149.
    Coccolini F, Cotte E, Glehen O, Lotti M, Poiasina E, Catena F, et al. Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials. Eur J Surg Oncol. 2014;40(1):12–26.PubMedCrossRefGoogle Scholar
  150. 150.
    Zivanovic O, Abramian A, Kullmann M, Fuhrmann C, Coch C, Hoeller T, et al. HIPEC ROC I: a phase i study of cisplatin administered as hyperthermic intraoperative intraperitoneal chemoperfusion followed by postoperative intravenous platinum-based chemotherapy in patients with platinum-sensitive recurrent epithelial ovarian cancer. Int J Cancer. 2014;136(3):699–708.PubMedGoogle Scholar
  151. 151.
    Hakeam HA, Breakiet M, Azzam A, Nadeem A, Amin T. The incidence of cisplatin nephrotoxicity post hyperthermic intraperitoneal chemotherapy (HIPEC) and cytoreductive surgery. Ren Fail. 2014;36(10):1486–91.PubMedCrossRefGoogle Scholar
  152. 152.
    Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. Pharmacokinetic study of perioperative intravenous Ifosfamide. Int J Surg Oncol. 2011;2011:9.Google Scholar
  153. 153.
    Deraco M, Baratti D, Cabras AD, Zaffaroni N, Perrone F, Villa R, et al. Experience with peritoneal mesothelioma at the Milan National Cancer Institute. World J Gastrointest Oncol. 2010;2(2):76–84.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Tritton TR. Cell surface actions of adriamycin. Pharmacol Ther. 1991;49(3):293–309.PubMedCrossRefGoogle Scholar
  155. 155.
    Triton TR, Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982;217(4556):248–50.PubMedCrossRefGoogle Scholar
  156. 156.
    Lane P, Vichi P, Bain DL, Tritton TR. Temperature dependence studies of adriamycin uptake and cytotoxicity. Cancer Res. 1987;47(15):4038–42.PubMedGoogle Scholar
  157. 157.
    Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. A pharmacologic analysis of intraoperative intracavitary cancer chemotherapy with doxorubicin. Cancer Chemother Pharmacol. 2009;63(5):799–805.PubMedCrossRefGoogle Scholar
  158. 158.
    Ozols RF, Young RC, Speyer JL, Sugarbaker PH, Greene R, Jenkins J, et al. Phase I and pharmacological studies of adriamycin administered intraperitoneally to patients with ovarian cancer. Cancer Res. 1982;42(10):4265–9.PubMedGoogle Scholar
  159. 159.
    Ozols RF, Locker GY, Doroshow JH, Grotzinger KR, Myers CE, Young RC. Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res. 1979;39(8):3209–14.PubMedGoogle Scholar
  160. 160.
    Ozols RF, Locker GY, Doroshow JH, Grotzinger KR, Myers CE, Fisher RI, et al. Chemotherapy for murine ovarian cancer: a rationale for ip therapy with adriamycin. Cancer Treat Rep. 1979;63(2):269–73.PubMedGoogle Scholar
  161. 161.
    Nagai K, Nogami S, Egusa H, Konishi H. Pharmacokinetic evaluation of intraperitoneal doxorubicin in rats. Pharmazie. 2014;69(2):125–7.PubMedGoogle Scholar
  162. 162.
    Harrison LE, Bryan M, Pliner L, Saunders T. Phase I trial of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy in patients undergoing cytoreduction for advanced intra-abdominal malignancy. Ann Surg Oncol. 2008;15(5):1407–13.PubMedCrossRefGoogle Scholar
  163. 163.
    Salvatorelli E, De Tursi M, Menna P, Carella C, Massari R, Colasante A, et al. Pharmacokinetics of pegylated liposomal doxorubicin administered by intraoperative hyperthermic intraperitoneal chemotherapy to patients with advanced ovarian cancer and peritoneal carcinomatosis. Drug Metab Dispos. 2012;40(12):2365–73.PubMedCrossRefGoogle Scholar
  164. 164.
    Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. Pharmacology of perioperative 5-fluorouracil. J Surg Oncol. 2010;102(7):730–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Elias D, Benizri E, Di Pietrantonio D, Menegon P, Malka D, Raynard B. Comparison of two kinds of intraperitoneal chemotherapy following complete cytoreductive surgery of colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2007;14(2):509–14.PubMedCrossRefGoogle Scholar
  166. 166.
    McConnell YJ, Mack LA, Francis WP, Ho T, Temple WJ. HIPEC + EPIC versus HIPEC-alone: differences in major complications following cytoreduction surgery for peritoneal malignancy. J Surg Oncol. 2013;107(6):591–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Tan GH, Ong WS, Chia CS, Tham CK, Soo KC, Teo MC. Does early post-operative intraperitoneal chemotherapy (EPIC) for patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) make a difference? Int J Hyperth. 2016;32(3):281–8.CrossRefGoogle Scholar
  168. 168.
    Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature. 1957;179(4561):663–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Muggia FM, Peters GJ, Landolph JR Jr. XIII International Charles Heidelberger Symposium and 50 years of fluoropyrimidines in cancer therapy held on september 6 to 8, 2007 at New York University Cancer Institute, Smilow Conference Center. Mol Cancer Ther. 2009;8(5):992–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Wagner PL, Jones D, Aronova A, Shia J, Weiser MR, Temple LK, et al. Early postoperative intraperitoneal chemotherapy following cytoreductive surgery for appendiceal mucinous neoplasms with isolated peritoneal metastasis. Dis Colon Rectum. 2012;55(4):407–15.PubMedCrossRefGoogle Scholar
  171. 171.
    Yu W, Whang I, Chung HY, Averbach A, Sugarbaker PH. Indications for early postoperative intraperitoneal chemotherapy of advanced gastric cancer: results of a prospective randomized trial. World J Surg. 2001;25(8):985–90.PubMedCrossRefGoogle Scholar
  172. 172.
    Kwon OK, Chung HY, Yu W. Early postoperative intraperitoneal chemotherapy for macroscopically serosa-invading gastric cancer patients. Cancer Res Treat. 2014;46(3):270–9.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Passot G, Vaudoyer D, Villeneuve L, Kepenekian V, Beaujard AC, Bakrin N, et al. What made hyperthermic intraperitoneal chemotherapy an effective curative treatment for peritoneal surface malignancy: a 25-year experience with 1,125 procedures. J Surg Oncol. 2016;113(7):796–803.PubMedCrossRefGoogle Scholar
  174. 174.
    Sugarbaker PH, Mora JT, Carmignani P, Stuart OA, Yoo D. Update on chemotherapeutic agents utilized for perioperative intraperitoneal chemotherapy. Oncologist. 2005;10(2):112–22.PubMedCrossRefGoogle Scholar
  175. 175.
    Rohena CC, Mooberry SL. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities. Nat Prod Rep. 2014;31(3):335–55.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    de Bree E, Theodoropoulos PA, Rosing H, Michalakis J, Romanos J, Beijnen JH, et al. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev. 2006;32(6):471–82.PubMedCrossRefGoogle Scholar
  177. 177.
    Mohamed F, Sugarbaker PH. Intraperitoneal taxanes. Surg Oncol Clin N Am. 2003;12(3):825–33.PubMedCrossRefGoogle Scholar
  178. 178.
    Van der Speeten K, Lemoine L, Sugarbaker P. Overview of the optimal perioperative intraperitoneal chemotherapy regimens used in current clinical practice. Pleura and Peritoneum. 2017;2(2):63–72. Retrieved 28 Aug. 2017, from. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Surgical OncologyZiekenhuis Oost-LimburgGenkBelgium
  2. 2.Department of Biochemistry, Faculty of MedicineUniversity HasseltDiepenbeekBelgium
  3. 3.Washington Cancer Institute, Washington Hospital CenterWashington, DCUSA

Personalised recommendations