Advertisement

New Treatment Modalities for the Management of Peritoneal Metastases

  • Aditi Bhatt
  • Akash Mehta
Chapter

Abstract

Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is a therapeutic option for a small subset of patients with peritoneal metastases arising from various primary sites. Locoregional therapies for effective management of patients who are not candidates for this procedure are needed. Recurrence after CRS and HIPEC is common. Strategies for improving the efficacy of CRS and HIPEC are being studied. New treatments that overcome the limitations of CRS and HIPEC are being evaluated in clinical and preclinical studies. New drugs for intraperitoneal use and new intraperitoneal therapies have been developed and investigated in both experimental and clinical studies. The results of some of these studies are encouraging, and these therapies may find a place in routine clinical practice in the future. An overview of the rationale, methodology, and preliminary results of experimental and clinical studies evaluating these new locoregional therapies for the management of PM is provided here.

Keywords

PIPAC New therapies of peritoneal cancer New treatment for peritoneal metastases New intraperitoneal therapies 

References

  1. 1.
    Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88(2):358–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Mohamed F, Cecil T, Moran B, Sugarbaker PA. New standard of care for the management of peritoneal surface malignancy. Curr Oncol. 2011;18(2):e84–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Goéré D, Souadka A, Faron M, Cloutier AS, Viana B, Honoré C, Dumont F, Elias D. Extent of colorectal peritoneal carcinomatosis: attempt to define a threshold above which HIPEC does not offer survival benefit: a comparative study. Ann Surg Oncol. 2015;22(9):2958–64.  https://doi.org/10.1245/s10434-015-4387-5.PubMedCrossRefGoogle Scholar
  4. 4.
    Goéré D, Malka D, Tzanis D, et al. Is there a possibility of a cure in patients with colorectal peritoneal carcinomatosis amenable to complete cytoreductive surgery and intraperitoneal chemotherapy? Ann Surg. 2013;257:1065–71.  https://doi.org/10.1097/SLA.0b013e31827e9289.PubMedCrossRefGoogle Scholar
  5. 5.
    Glehen O, Gilly FN, Arvieux C, Cotte E, Boutitie F, Mansvelt B, Bereder JM, Lorimier G, Quenet F, Elias D. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2010;17:2370–7.  https://doi.org/10.1245/s10434-010-1039-7. PubMedCrossRefGoogle Scholar
  6. 6.
    Chia CS, You B, Decullier E, et al. Patients with peritoneal carcinomatosis from gastric cancer treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: is cure a possibility? Ann Surg Oncol. 2016;23:1971.  https://doi.org/10.1245/s10434-015-5081-3.PubMedCrossRefGoogle Scholar
  7. 7.
    Bijelic L, Yan TD, Sugarbaker PH. Failure analysis of recurrent disease following complete cytoreduction and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol. 2007;14(8):2281–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Konigsrainer I, Horvath P, Struller F, Forkl V, Konigsrainer A, Beckert S. Risk factors for recurrence following complete cytoreductive surgery and HIPEC in colorectal cancer-derived peritoneal surface malignancies. Langenbeck's Arch Surg. 2013;398(5):745–9.CrossRefGoogle Scholar
  9. 9.
    Van Oudheusden TR, Grull H, Dankers PY, De Hingh IH. Targeting the peritoneum with novel drug delivery systems in peritoneal carcinomatosis: a review of the literature. Anticancer Res. 2015;35(2):627–34.PubMedGoogle Scholar
  10. 10.
    Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum. World J Gastroenterol. 2016;22(34):7692–707.  https://doi.org/10.3748/wjg.v22.i34.7692.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Royer B, Kalbacher E, Onteniente S, et al. Intraperitoneal clearance as a potential biomarker of cisplatin after intraperitoneal perioperative chemotherapy: a population pharmacokinetic study. Br J Cancer. 2012;106:460–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ansaloni L, Coccolini F, Morosi L, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015;112:306–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Wasnik AP, Maturen KE, Kaza RK, Al-Hawary MM, Francis IR. Primary and secondary disease of the peritoneum and mesentery: review of anatomy and imaging features. Abdom Imaging. 2015;40:626–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288:F433–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat. 1941;69:439.CrossRefGoogle Scholar
  16. 16.
    Fedorko ME, Hirsch JG, Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res. 1971;69:313–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Ultrastructure and pathology of the peritoneum in peritoneal dialysis. In: Gokal R, Nolph K, editors. Textbook of peritoneal dialysis. Dordrecht, The Netherlands: Kluwer Academic; 1994. p. 17–24.Google Scholar
  18. 18.
    Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol Heart Circ Physiol. 1983;244:H89–96.CrossRefGoogle Scholar
  19. 19.
    Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physiol Renal Fluid Electrolyte Physiol. 1996;270:F377–90.CrossRefGoogle Scholar
  20. 20.
    Flessner MF, Henegar J, Bigler S, Genous L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit Dial Int. 2003;23:542–9.PubMedGoogle Scholar
  21. 21.
    De Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker P. Extent of parietal peritonectomy does not change intraperitoneal chemo therapy pharmacokinetics. Cancer Chemother Rep. 2003;52:108–12.CrossRefGoogle Scholar
  22. 22.
    Dedrick RL, Myers CE, Bungay PM, DeVita VT Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.PubMedGoogle Scholar
  23. 23.
    Van der Speeten K, Govaerts K, Stuart A, Sugarbaker P. Pharmacokinetics of the perioperative use of cancer chemotherapy in peritoneal surface malignancy patients. Gastroenterol Res Pract. 2012;2012.:Article ID 378064, 9 p,  https://doi.org/10.1155/2012/378064.
  24. 24.
    Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol. 1985;248(3):F425–35.PubMedGoogle Scholar
  25. 25.
    Markman M, Blessing JA, Major F, Manetta A. Salvage intraperitoneal therapy of ovarian cancer employing cisplatin and etoposide: a Gynecologic Oncology Group study. Gynecologic Oncol. 1993;50:191–5.CrossRefGoogle Scholar
  26. 26.
    Jacquet P, Sugarbaker PH. Peritoneal-plasma barrier. In: Sugarbaker PH, editor. Peritoneal carcinomatosis: principles of management. Cancer Treatment and Research, vol. 82. Boston, MA: Springer; 1996.Google Scholar
  27. 27.
    Li XF, et al. Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res. 2007;67:7646–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Jakobsen A, Mortensen LS. On the importance of sensitivity to the dose-effect relationship in chemotherapy. Acta Oncol. 1997;36:375–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Alberts DS, Young L, Mason N, Salmon SE. In vitro evaluation of anticancer drugs against ovarian cancer at concentrations achievable by intraperitoneal administration. Semin Oncol. 1985;12:38–42.PubMedGoogle Scholar
  30. 30.
    Andrews PA, Velury S, Mann SC, Howell SB. cis-Diamminedichloroplatinum(Ii) accumulation in sensitive and resistant human ovarian carcinoma sells. Cancer Res. 1988;48:68–73.PubMedGoogle Scholar
  31. 31.
    Matsushima Y, et al. Time-schedule dependency of the inhibiting activity of various anticancer drugs in the clonogenic assay. Cancer Chemother Pharmacol. 1985;14:104–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Howell SB. Pharmacologic principles of intraperitoneal chemotherapy for the treatment of ovarian cancer. Int J Gynecol Cancer. 2008;18:20–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Ceelen WP, Flessner MF. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol. 2010;7(2):108–15.  https://doi.org/10.1038/nrclinonc.2009.217.PubMedCrossRefGoogle Scholar
  34. 34.
    El-Kareh A, Secomb T. A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia. 2004;6:117–27.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Au J, Guo P, Gao Y, et al. Multiscale tumor spatiokinetic model for intraperitoneal therapy. AAPS J. 2014;16:424–39.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Winner K, Steinkamp M, Lee R, et al. Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Res. 2016;76:1320–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Steuperaert M, Falvo D’Urso Labate G, Debbaut C, De Wever O, Vanhove C, Ceelen W, Segers P. Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Deliv. 2017;24(1):491–501.  https://doi.org/10.1080/10717544.2016.1269848. PubMedCrossRefGoogle Scholar
  38. 38.
    Klaver LB, Hendriks T, Lomme R, et al. Intraopera- tive versus early postoperative intraperitoneal chemotherapy a er cytoreduction for colorectal peritoneal carcinomatosis: an experimental study. Ann Surg Oncol. 2012;19(Supplement 3):S475–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Elias D, Blot F, El Otmany A, et al. Curative treatment of peritoneal carcinomatosis arising from colorectal cancer by complete resection and intraperitoneal chemotherapy. Cancer. 2001;92:71–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Poveda AA, Salazar RR, del Campo JJM, Mendiola CC, Cassinello JJ, Ojeda BB, et al. Update in the management of drug delivery systems for intraperitoneal therapy ovarian and cervical carcinoma. Clin Transl Oncol. 2007;9:443–51.PubMedCrossRefGoogle Scholar
  41. 41.
    Wright AA, Cronin A, Milne DE, et al. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J Clin Oncol. 2015;33(26):2841–7.  https://doi.org/10.1200/JCO.2015.61.4776.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89(7):480–7.  https://doi.org/10.1093/jnci/89.7.480.PubMedCrossRefGoogle Scholar
  43. 43.
    De Smet L, Ceelen W, Remon JP, Vervaet C. Optimization of drug delivery systems for intraperitoneal therapy to extend the residence time of the chemotherapeutic agent. Sci World J. 2013;2013:720858.  https://doi.org/10.1155/2013/720858.Google Scholar
  44. 44.
    Gardner SN. A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res. 2000;60(5):1417–25.PubMedGoogle Scholar
  45. 45.
    Hirano K, Hunt CA, Strubbe A, MacGregor RD. Lymphatic transport of liposome-encapsulated drugs following intraperitoneal administration. Effect of lipid composition. Pharm Res. 1985;6:271–8.CrossRefGoogle Scholar
  46. 46.
    Chung HJ, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today. 2009;4:429–37.CrossRefGoogle Scholar
  47. 47.
    Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277–83.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.CrossRefGoogle Scholar
  50. 50.
    Sutton C. Adhesions and their prevention. Obstet Gynaecol. 2005;7:168–76.Google Scholar
  51. 51.
    Fan R, Tong A, Li X, et al. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomedicine. 2015;10:7291–305.  https://doi.org/10.2147/IJN.S89066.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Fan R, Deng X, Zhou L, et al. Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials. Int J Nanomedicine. 2014;9:615–26.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS. Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomedicine. 2012;7:4077–88.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53(3):321–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu L, Wu Q, Ma X, Xiong D, Gong C, Qian Z, Zhao X, Wei Y. Camptothecine encapsulated composite drug delivery system for colorectal peritoneal carcinomatosis therapy: biodegradable microsphere in thermosensitive hydrogel. Colloids Surf Biointerfaces. 2013;106:93–101.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang Y, Gong C, Yang L, Wu Q, Shi S, Shi H, Qian Z, Wei Y. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice. BMC Cancer. 2010;10(402)Google Scholar
  57. 57.
    Hyoudou K, Nishikawa M, Kobayashi Y, Kuramoto Y, Yamashita F, Hashida M. Inhibition of adhesion and proliferation of peritoneally disseminated tumor cells by pegylated catalase. Clin Exp Metastasis. 2006;23(5–6):269–78.PubMedCrossRefGoogle Scholar
  58. 58.
    Emoto S, Yamaguchi H, Kamei T, Ishigami H, Suhara T, Suzuki Y, Ito T, Kitayama J, Watanabe T. Intraperitoneal administration of cisplatin via an in situ cross-linkable hyaluronic acid-based hydrogel for peritoneal dissemination of gastric cancer. Surg Today. 2013;44(5):919–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Bae WK, Park MS, Lee JH, Hwang JE, Shim HJ, Cho SH, Kim DE, Ko HM, Cho CS, Park IK, Chung IJ. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal metastasis of gastric cancer. Biomaterials. 2013;34(4):1433–341.PubMedCrossRefGoogle Scholar
  60. 60.
    Yu J, Lee HJ, Hur K, Kwak MK, Han TS, Kim WH, Song SC, Yanagihara K, Yang HK. The antitumor effect of a thermosensitive polymeric hydrogel containing paclitaxel in a peritoneal carcinomatosis model. Investig New Drugs. 2012;30(1):1–7.CrossRefGoogle Scholar
  61. 61.
    Bajaj G, Kim MR, Mohammed SI, Yeo Y. Hyaluronic acid based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors. J Control Release. 2012;158(3):386–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Gong C, Wang C, WangY WQ, Zhang D, Luo F, Qian Z. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095–104.PubMedCrossRefGoogle Scholar
  63. 63.
    Tamura T, Imai J, Matsumoto A, et al. Organ distribution of cisplatin a er intraperitoneal administration of cisplatin- loaded microspheres. Eur J Pharm Biopharm. 2002;54(1):1–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Fujiyama J, Nakase Y, Osaki K, Sakakura C, Yamagishi H, Hagiwara A. Cisplatin incorporated in microspheres: development and fundamental studies for its clinical application. J Control Release. 2003;89(3):397–408.PubMedCrossRefGoogle Scholar
  65. 65.
    Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JLS. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327(3):673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Gunji S, Obama K, Matsui M, Tabata Y, Sakai Y. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery. 2013;154(5):991–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Hagiwara A, Takahashi T, Sawai K, Sakakura C, Tsujimoto H, Imanishi T, Ohgaki M, Yamazaki J, Muranishi S, Yamamoto A, Fujita T. Pharmacological effects of 5-fluorouracil microspheres on peritoneal carcinomatosis in animals. Br J Cancer. 1996;74(9):1392–6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A. 2006;77(2):351–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexyl- cyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer A. 1994;30(1):89–93.CrossRefGoogle Scholar
  71. 71.
    Sadava D, Coleman A, Kane SE. Liposomal daunorubicin overcomes drug resistance in human breast, ovarian and lung carcinoma cells. J Liposome Res. 2002;12(4):301–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Colson YL, Liu R, Southard EB, et al. The performance of expansile nanoparticles in a murine model of peritoneal carcinomatosis. Biomaterials. 2011;32(3):832–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Deng Y, Yang F, Cocco E, et al. Improved i.p. drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A. 2016;113(41):11453–8.  https://doi.org/10.1073/pnas.1523141113. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fu Q, Hargrove D, Lu X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine. 2016;12(7):1951–9.  https://doi.org/10.1016/j.nano.2016.04.013.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Vassileva V, Grant J, De Souza R, Allen C, Piquette-Miller M. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol. 2007;60(6):907–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Reddy LH, Adhikari JS, Dwarakanath BS, Sharma RK, Murthy RR. Tumoricidal effects of etoposide incorporated into solid lipid nanoparticles after intraperitoneal administration in Dalton’s lymphoma bearing mice. AAPS J. 2006;8(2):254–62.Google Scholar
  77. 77.
    Emoto S, Yamaguchi H, Kishikawa J, Yamashita H, Ishigami H, Kitayama J. Antitumor effect and pharmacokinetics of intraperitoneal NK105, a nanomicellar paclitaxel formulation for peritoneal dissemination. Cancer Sci. 2012;103(7):1304–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Xu S, Fan H, Yin L, Zhang J, Dong A, Deng L, Tang H. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur J Pharm Biopharm. 2016;104:251–9.  https://doi.org/10.1016/j.ejpb.2016.05.010.PubMedCrossRefGoogle Scholar
  79. 79.
    Dadashzadeh S, Mirahmadi N, Babaei MH, Vali AM. Peritoneal retention of liposomes: effects of lipid composition, PEG coating and liposome charge. J Control Release. 2010;148(2):177–86.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin YY, Li JJ, Chang CH, YC L, Hwang JJ, Tseng YL, Lin WJ, Ting G, Wang HE. Evaluation of pharmacokinetics of 111In- labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model. Cancer Biother Radiopharm. 2009;24(4):453–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Gelderblom H, Verweij J, van Zomeren DM, et al. Influence of cremophor EL on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8(4):1237–41.PubMedGoogle Scholar
  82. 82.
    Weiss RB, Donehower RC, Wiernik PH, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8(7):1263–8.PubMedCrossRefGoogle Scholar
  83. 83.
    De Smet L, Colin P, Ceelen W, et al. Development of a nanocrystalline paclitaxel formulation for hipec treatment. Pharm Res. 2012;29:2398–406.PubMedCrossRefGoogle Scholar
  84. 84.
    Tsai M, Lu Z, Wang J, Yeh TK, Wientjes MG, Au JLS. Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res. 2007;24(9):1691–701.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Yokogawa K, Jin M, Furui N, et al. Disposition kinetics of taxanes a er intraperitoneal administration in rats and in uence of surfactant vehicles. J Pharm Pharmacol. 2004;56(5):629–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Soo PL, Cho J, Grant J, Ho E, Piquette-Miller M, Allen C. Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm. 2008;69(1):149–57.CrossRefGoogle Scholar
  87. 87.
    Grant J, Blicker M, Piquette-Miller M, Allen C. Hybrid films from blends of chitosan and egg phosphatidylcholine for localized delivery of paclitaxel. J Pharm Sci. 2005;94(7):1512–27.PubMedCrossRefGoogle Scholar
  88. 88.
    Dakwar GR, Zagato E, Delanghe J, Hobel S, Aigner A, Denys H, Braeckmans K, Ceelen W, De Smedt SC, Remaut K. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater. 2014;10(7):2965–75.PubMedCrossRefGoogle Scholar
  89. 89.
    Hagiwara A, Takahashi T, Yamaguchi T, Taniguchi H, Iwamoto A, Yoneyama C, Ito M, Sasabe T, Lee M, Wada R. Intracavitary microspheres incorporating cisplatinum in the treatment of malignant effusions--clinical trials. Gan To Kagaku Ryoho. 1990;17(8 Pt 2):1575–8.PubMedGoogle Scholar
  90. 90.
    Gremonprez F, Willaert W, Ceelen W. Intraperitoneal chemotherapy (IPC) for peritoneal carcinomatosis: review of animal models. J Surg Oncol. 2014;109(2):110–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Elias D, Lefevre JH, Chevalier J, Brouquet A, Marchal F, Classe JM, Ferron G, Guilloit JM, Meeus P, Goéré D, Bonastre J. Complete cytoreductive surgery plus intraperitoneal chemo- hyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27(5):681–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Rodríguez Silva C, Moreno Ruiz FJ, Bellido Estévez I, et al. Are there intra-operative hemodynamic differences between the coliseum and closed HIPEC techniques in the treatment of peritoneal metastasis? A retrospective cohort study. World J Surg Oncol. 2017;15:51.  https://doi.org/10.1186/s12957-017-1119-2.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Esquis P, Consolo D, Magnin G, et al. High intra-abdominal pressure enhances the penetration and antitumor effect of Intraperitoneal cisplatin on experimental peritoneal carcinomatosis. Ann Surg. 2006;244(1):106–12.  https://doi.org/10.1097/01.sla.0000218089.61635.5f.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gesson-Paute A, Ferron G, Thomas F, de Lara EC, Chatelut E, Querleu D. Pharmacokinetics of oxaliplatin during open versus laparoscopically assisted heated intraoperative chemotherapy (HIPEC): an experimental study. Ann Surg Oncol. 2008;15(1):339–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Facy O, Al Samman S, Magnin G, et al. High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study. Ann Surg. 2012;256(6):1084–8.  https://doi.org/10.1097/SLA.0b013e3182582b38.PubMedCrossRefGoogle Scholar
  96. 96.
    Facy O, Combier C, Pussier M, et al. High pressure does not counterbalance the advantages of open techniques over closed techniques during heated intraperitoneal chemotherapy with oxaliplatin. Surgery. 2015;157(1):72–7.  https://doi.org/10.1016/j.surg.2014.06.006.PubMedCrossRefGoogle Scholar
  97. 97.
    Reymond MA, Hu B, Garcia A, Reck T, Köckerling F, Hess J, Morel P. Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator. Surg Endosc. 2000;14(1):51–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Solaß W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc. 2012;26(7):1849–55.  https://doi.org/10.1007/s00464-012-2148-0.PubMedCrossRefGoogle Scholar
  99. 99.
    Sharon A, Hirsh I, Kaufman Y, Ostrovski L, Brandes-Klein O, Spiegel D, Shenderey A, Lissak A. The effect of continuous intraabdominal nebulization of lidocaine during gynecological laparoscopic procedures: a pilot study. Gynecol Surg. 2008;5:221–5.CrossRefGoogle Scholar
  100. 100.
    Alkhamesi NA, Ridgway PF, Ramwell A, McCullough PW, Peck DH, Darzi AW. Peritoneal nebulizer. A novel technique for delivering intraperitoneal therapeutics in laparoscopic surgery to prevent locoregional recurrence. Surg Endosc. 2009;19:1142–6.CrossRefGoogle Scholar
  101. 101.
    Canis M, Matsuzaki S, Bourdel N, Jardon K, Cotte B, Botchorishvili R, Rabischong B, Mage G. Peritoneum and laparoscopic environment [review]. Bull Cancer. 2007;94:1043–51.PubMedGoogle Scholar
  102. 102.
    Solass W, Herbette A, Schwarz T, Hetzel A, Sun JS, Dutreix M, Reymond MA. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination capnoperitoneum: proof of concept. Surg Endosc. 2012;26(3):847–52.  https://doi.org/10.1007/s00464-011-1964-y.PubMedCrossRefGoogle Scholar
  103. 103.
    Laube BL. The expanding role of aerosols in systemic drug delivery, genetherapy, and vaccination. Respir Care. 2005;50:1161–76.PubMedGoogle Scholar
  104. 104.
    Minchinton AI, Tannock IF. Drug penetration in solid tumors. Nat Rev Cancer. 2006;6:583–92.  https://doi.org/10.1038/nrc1893.PubMedCrossRefGoogle Scholar
  105. 105.
    Solass W, Kerb R, Mürdter T, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–9.  https://doi.org/10.1245/s10434-013-3213-1.PubMedCrossRefGoogle Scholar
  106. 106.
    Kakchekeeva T, Demtröder C, Herath NI, et al. In vivo feasibility of electrostatic precipitation as an adjunct to pressurized intraperitoneal aerosol chemotherapy (ePIPAC). Ann Surg Oncol. 2016;23(Suppl 5):592–8.  https://doi.org/10.1245/s10434-016-5108-4.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ansell J, Warren N, Wall P, et al. Electrostatic precipitation is a novel way of maintaining visual field clarity during laparoscopic surgery: a prospective double-blind randomized controlled pilot study. Surg Endosc. 2014;28:2057–65.  https://doi.org/10.1007/s00464-014-3427-8.PubMedCrossRefGoogle Scholar
  108. 108.
    Tempfer CB, Celik I, Solass W, Buerkle B, Pabst U, Zieren J, et al. Activity of pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in women with recurrent, platinum-resistant ovarian cancer: preliminary clinical experience. Gynecol Oncol. 2014;132(2):307–11.PubMedCrossRefGoogle Scholar
  109. 109.
    Tempfer CB, Solass W, Buerkle B, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in a woman with pseudomyxoma peritonei: a case report. Gynecol Oncol Rep. 2014;10:32–5.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Giger-Pabst U, Solass W, Buerkle B, Reymond MA. Low-dose intraperitoneal aerosol chemotherapy (PIPAC) as an alternative therapy for ovarian cancer in an octogenarian patient. Anticancer Res. 2015;35(4):2309–14.PubMedGoogle Scholar
  111. 111.
    Robella M, Vaira M, De Simone M. Safety and feasibility of pressurized intraperitoneal aerosol chemotherapy (PIPAC) associated with systemic chemotherapy: an innovative approach to treat peritoneal carcinomatosis. World J Surg Oncol. 2016;14:128.  https://doi.org/10.1186/s12957-016-0892-7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tempfer CB, Winnekendonk G, Solass W, et al. Pressurized intraperitoneal aerosol chemotherapy in women with recurrent ovarian cancer: a phase 2 study. Gynecol Oncol. 2015;137(2):223–8.  https://doi.org/10.1016/j.ygyno.2015.02.009.PubMedCrossRefGoogle Scholar
  113. 113.
    Nadiradze G, Giger-Pabst U, Zieren J, Strumberg D, Solass W, Reymond M-A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with low-dose cisplatin and doxorubicin in gastric peritoneal metastasis. J Gastrointest Surg. 2016;20:367–73.  https://doi.org/10.1007/s11605-015-2995-9.PubMedCrossRefGoogle Scholar
  114. 114.
    Demtröder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. Color Dis. 2016;18(4):364–71.  https://doi.org/10.1111/codi.13130.CrossRefGoogle Scholar
  115. 115.
    Girshally R, Demtröder C, Albayrak N, Zieren J, Tempfer C, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) as a neoadjuvant therapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2016;14:253.  https://doi.org/10.1186/s12957-016-1008-0.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA. Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2013;20(7):2311–6.  https://doi.org/10.1245/s10434-012-2840-2.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Odendahl K, Solass W, Demtröder C, Giger-Pabst U, Zieren J, Tempfer C, Reymond MA. Quality of life of patients with end-stage peritoneal metastasis treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Eur J Surg Oncol. 2015;41(10):1379–85.  https://doi.org/10.1016/j.ejso.2015.06.001.PubMedCrossRefGoogle Scholar
  118. 118.
    Otterson GA, Villalona-Calero MA, Sharma S, et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res. 2007;13:1246–52.  https://doi.org/10.1158/1078-0432.CCR-06-1096.PubMedCrossRefGoogle Scholar
  119. 119.
    Lemarie E, Vecellio L, Hureaux J, et al. Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv. 2011;24:261–70.  https://doi.org/10.1089/jamp.2010.0872.PubMedCrossRefGoogle Scholar
  120. 120.
    Solaß W, Giger-Pabst U, Zieren J, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC): occupational health and safety aspects. Ann Surg Oncol. 2013;20(11):3504–11.  https://doi.org/10.1245/s10434-013-3039-x.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hübner M, Grass F, Teixeira-Farinha H, Pache B, Mathevet P, Demartines N. Pressurized intra peritoneal aerosol chemotherapy - practical aspects. Eur J Surg Oncol. 2017;pii: S0748-7983(17)30437-7.  https://doi.org/10.1016/j.ejso.2017.03.019.
  122. 122.
    Lotti M, Capponi MG, Piazzalunga D, et al. Laparoscopic HIPEC: a bridge between open and closed-techniques. J Minimal Access Surg. 2016;12(1):86–9.  https://doi.org/10.4103/0972-9941.158965.CrossRefGoogle Scholar
  123. 123.
    Esquivel J, Averbach A, Chua TC. Laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with limited peritoneal surface malignancies: feasibility, morbidity and outcome in an early experience. Ann Surg. 2011;253:764–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Thomas F, Ferron G, Gesson-Paute A, Hristova M, Lochon I, Chatelut E. Increased tissue diffusion of oxaliplatin during laparoscopically assisted versus open heated intraoperative intraperitoneal chemotherapy (HIPEC). Ann Surg Oncol. 2008;15:3623–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Los G, van Vugt MJ, Pinedo HM. Response of peritoneal solid tumours after intraperitoneal chemohyperthermia treatment with cisplatin or carboplatin. Br J Cancer. 1994;69(2):235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    C-C W, Yang Y-C, Hsu Y-T, et al. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer. Oncotarget. 2015;6(29):26861–75.Google Scholar
  127. 127.
    Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv. 2011;2(8):1001–14.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Carpin LB, Bickford LR, Agollah G, Yu TK, Schiff R, Li Y, Drezek RA. Immunoconjugated gold nanoshell-medi- ated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat. 2011;125:27–34.PubMedCrossRefGoogle Scholar
  129. 129.
    Day ES, Thompson PA, Zhang L, Lewinski NA, Ahmed N, Drezek RA, Blaney SM, West JL. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neuro-Oncol. 2011;104:55–63.CrossRefGoogle Scholar
  130. 130.
    Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res. 2014;74(10):2655–62.  https://doi.org/10.1158/0008-5472.CAN-13-3696.PubMedCrossRefGoogle Scholar
  131. 131.
    Salmon H, Franciskiewicz K, Damatte D, Dieu-Nosjean M-C, Validire P, Trautmann A, Mami-Charaib F, Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumours. J Clin Invest. 2012;122:899–910.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cheng J, Sauthoff H, Huang YQ, Kutler DI, Bajwa S, Rom WN, Hay JG. Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther. 2007;15:1982–90.PubMedCrossRefGoogle Scholar
  133. 133.
    Padera TP, Stoll BR, Tooredman JB, Capen D, diTomase E, Jain RK. Cancer cells compress intratumour vessels: pressure from proliferatfiing cells impedes transport of therapeutic drugs into tumors. Nature. 2004;247:695.CrossRefGoogle Scholar
  134. 134.
    Jang SH, Wientjes MG, Au JLS. Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: effect of treatment schedule. J Pharmacol Exp Ther. 2001;296:1035–42.PubMedGoogle Scholar
  135. 135.
    Kondo A, et al. Hypotonic intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in mice. Br J Cancer. 1996;73:1166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H, et al. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res. 2008;68:4746–53.PubMedCrossRefGoogle Scholar
  137. 137.
    Goel S, Wong AH-K, Jain RK. Vascularnormalizationasatherapeutic strategy for malignant and non-malignant disease. Cold Spring Harb Perspect Med. 2012;2:a006486.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gremonprez F, Descamps B, Izmer A, et al. Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model. Oncotarget. 2015;6(30):29889–900.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol. 2013;31:2205–18.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Tailor TD, Hanna G, Yarmolenko PS, Dreher MR, Betof AS, Nixon AB, Spasojevic I, Dewhirst MW. Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther. 2010;9:1798–808.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Fan Y, Pu W, He B, Fu F, Yuan L, Wu H, et al. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013;34:2277–88.PubMedCrossRefGoogle Scholar
  142. 142.
    Skliarenko JV, Lunt SJ, Gordon ML, Vitkin A, Milosevic M, Hill RP. Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumours. Cancer Res. 2006;66:2074–80.PubMedCrossRefGoogle Scholar
  143. 143.
    Ley CD, Horsmann M, PEG K. Early effects of combretastatin A-4 disodium phosphate on tumour perfusion and interstitial fluid pressure. Neoplasia. 2007;9:108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF. Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res. 2007;13:5643s–45s; Koppe MJ, Soede AC, Pels W, Oyen WJG, Goldenberg DM, Bleichrodt RP, Boerman OC. Experimental radioimmunotherapy of small peritoneal metastases of colorectal origin. Int J Cancer 2003;106:965–72.Google Scholar
  145. 145.
    Kinuya S, Yokoyama K, Fukuoka M, Hiramatsu T, Mori H, Shiba K, Watanabe N, Shuke N, Michigishi T, Tonami N. Intraperitoneal radioimmunotherapy to treat the early phase of peritoneal dissemination of human colon cancer cells in a murine model. Nucl Med Commun. 2007;28:129–33.PubMedCrossRefGoogle Scholar
  146. 146.
    Epenetos AA, Hird V, Lambert H, Mason P, Coulter C. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int J Gynecol Cancer. 2000;10:44–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Verheijen RH, Massuger LF, Benigno BB, Epenetos AA, Lopes A, Soper JT, Markowska J, Vyzula R, Jobling T, Stamp G, Spiegel G, Thurston D, Falke T, Lambert J, Seiden MV. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol. 2006;24:571–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Oei AL, Verheijen RH, Seiden MV, Benigno BB, Lopes A, Soper JT. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine Hmfg1 without improvement in overall survival. Int J Cancer. 2007;120:2710–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Vergote IB, Vergote-De Vos LN, Abeler VM, et al. Randomized trial comparing cisplatin with radioactive phosphorus or whole-abdomen irradiation as adjuvant treatment of ovarian cancer. Cancer. 1992;69:741–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Young RC, Brady MF, Nieberg RK, et al. Adjuvant treatment for early ovarian cancer: a randomized phase III trial of intraperitoneal 32P or intravenous cyclophosphamide and cisplatin--a gynecologic oncology group study. J Clin Oncol. 2003;21:4350–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Nicholson S, Gooden CS, Hird V, et al. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: a matched analysis. Oncol Rep. 1998;5:223–6.PubMedGoogle Scholar
  152. 152.
    Macey DJ, Meredith RF. A strategy to reduce red marrow dose for intraperitoneal radioimmunotherapy. Clin Cancer Res. 1999;5:3044s–7s.PubMedGoogle Scholar
  153. 153.
    Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol. 2014;3:324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Aarts F, Hendriks T, Boerman OC, Koppe MJ, Oyen WJG, Bleichrodt RP. A comparison between radioimmunotherapy and hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis of colonic origin in rats. Ann Surg Oncol. 2007;14(11):3274–82.  https://doi.org/10.1245/s10434-007-9509-2.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Boudousq V, Ricaud S, Garambois V, et al. Brief intraperitoneal radioimmunotherapy of small peritoneal carcinomatosis using high activities of noninternalizing 125I-labeled monoclonal antibodies. J Nucl Med. 2010;51(11):1748–55.  https://doi.org/10.2967/jnumed.110.080226.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Andersson H, Cederkrantz E, Back T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)at-Mx35 F(Ab’)2--a phase I study. J Nucl Med. 2009;50:1153–60.PubMedCrossRefGoogle Scholar
  157. 157.
    Meredith R, Torgue J, Shen S, et al. Dose escalation and Dosimetry of first in human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.  https://doi.org/10.2967/jnumed.114.143842. PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Casson AG. Photofrin PDT for early stage esophageal cancer: a new standard of care? Photodiagn Photodyn Ther. 2009;6:155–6.CrossRefGoogle Scholar
  159. 159.
    Choi MC, Lee C, Kim SJ. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia: a systemic review. Photodiagn Photodyn Ther. 2014;11:479–80.CrossRefGoogle Scholar
  160. 160.
    Ikeda N, Usuda J, Kato H, et al. New aspects of photodynamic therapy for central type early stage lung cancer. Lasers Surg Med. 2011;43:749–54.PubMedCrossRefGoogle Scholar
  161. 161.
    Azaïs H, Mordon S, Collinet P. Intraperitoneal photodynamic therapy for peritoneal metastasis of epithelial ovarian cancer. Limits and future prospects. Gynecol Obstet Fertil Senol. 2017;45(4):249–56.  https://doi.org/10.1016/j.gofs.2017.02.005.PubMedGoogle Scholar
  162. 162.
    Guyon L, Farine MO, Lesage JC, Gevaert AM, Simonin S, Schmitt C, Collinet P, Mordon S. Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: a toxicity study. Photodiagnosis Photodyn Ther. 2014;11(3):265–74.  https://doi.org/10.1016/j.pdpdt.2014.04.006.PubMedCrossRefGoogle Scholar
  163. 163.
    Azaïs H, Schmitt C, Tardivel M, Kerdraon O, Stallivieri A, Frochot C, Betrouni N, Collinet P, Mordon S. Assessment of the specificity of a new folate-targeted photosensitizer for peritoneal metastasis of epithelial ovarian cancer to enable intraperitoneal photodynamic therapy. A preclinical study. Photodiagnosis Photodyn Ther. 2016;13:130–8.  https://doi.org/10.1016/j.pdpdt.2015.07.005.PubMedCrossRefGoogle Scholar
  164. 164.
    Kalli KR, Oberg AL, Keeney GL, Christianson TJH, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108(3):619–26.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Markert S, Lassmann S, Gabriel B, Klar M, Werner M, Gitsch G, et al. Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res. 2008;28(6A):3567–72.PubMedGoogle Scholar
  166. 166.
    O’Shannessy DJ, Somers EB, Smale R, Fu Y-S. Expression of folate receptor-a (FRA) in gynecologic malignancies and its relationship to the tumor type. Int J Gynecol Pathol. 2013;32(3):258–68.PubMedCrossRefGoogle Scholar
  167. 167.
    Crane LMA, Arts HJG, Oosten M, Low PS, Zee AGJ, Dam GM, et al. The effect of chemotherapy on expression of folate receptor-alpha in ovarian cancer. Cell Oncol. 2011;35(1):9–18.CrossRefGoogle Scholar
  168. 168.
    Yokoyama Y, Shigeto T, Miura R, Kobayashi A, Mizunuma M, Yamauchi A, Futagami M, Mizunuma H. A strategy using photodynamic therapy and clofibric acid to treat peritoneal dissemination of ovarian cancer. Asian Pac J Cancer Prev. 2016;17(2):775–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Mroz P, Xia Y, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, Sharma SK, Dai T, Khan UJ, Wharton T, Hamblin MR. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine. 2011;7(6):965–74.  https://doi.org/10.1016/j.nano.2011.04.007.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y, et al. Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin Cancer Res. 2016;22:2969–80.PubMedCrossRefGoogle Scholar
  171. 171.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22:1856–64.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor–modified t cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.Google Scholar
  175. 175.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptormodified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21:3149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, et al. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 2016;23:142–8.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumortargeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4:e994446.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Hong H, Brown CE, Ostberg JR, Priceman SJ, Chang WC, Weng L, et al. L1 cell adhesion molecule-specific chimeric antigen receptor-redirected human T cells exhibit specific and efficient antitumor activity against human ovarian cancer in mice. PLoS One. 2016;11:e0146885.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    VanLith ML, Kohlgraf KG, Sivinski CL, Tempero RM, Hollingsworth MA. MUC1- specific antitumor responses: molecular requirements for CD4-mediated responses. Int Immunol. 2002;14:873–82.PubMedCrossRefGoogle Scholar
  181. 181.
    Dobrzanski MJ, Rewers-Felkins KA, Quinlin IS, Samad KA, Phillips CA, Robinson W, et al. Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic TReg cell subpopulations that result in increased ovarian cancer patient survival. Clin Immunol. 2009;133:333–52.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Ai YQ, Cai K, JH H, Jiang LW, Gao YR, Zhao H, et al. The clinical effects of dendritic cell vaccines combined with cytokine-induced killer cells intraperitoneal injected on patients with malignant ascites. Int J Clin Exp Med. 2014;7:4272–81.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Patriarca C, Macchi RM, Marschner AK, Mellstedt H. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38(1):68–75.PubMedCrossRefGoogle Scholar
  184. 184.
    Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, Lindhofer H. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol. 1999;163:1246–52.Google Scholar
  185. 185.
    Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs. 2010;2:309–19.  https://doi.org/10.4161/mabs.2.3.11791.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Bokemeyer C. Catumaxomab—trifunctional anti-EpCAM antibody used to treat malignant ascites. Expert Opin Biol Ther. 2010;10(8):1259–69.PubMedCrossRefGoogle Scholar
  187. 187.
    Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood. 2001;98(8):2526–34.Google Scholar
  188. 188.
    Schmitt M, Schmitt A, Reinhardt P, Thess B, Manfras B, Lindhofer H, et al. Opsonization with a trifunctional bispecific (alphaCD3 x alphaEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol. 2004;25(4):841–8.Google Scholar
  189. 189.
    Ruf P, Gires O, Jager M, Fellinger K, Atz J, Lindhofer H. Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer. Br J Cancer. 2007;97(3):315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Mackey JR, Venner PM. Malignant ascites: demographics, therapeutic effacy and predictors of survival. Can J Oncol. 1996;6:474–80.PubMedGoogle Scholar
  191. 191.
    Wimberger P, Gilet H, Gonschior AK, Heiss MM, Moehler M, Oskay-Oezcelik G, et al. Deterioration in quality of life (QoL) in patients with malignant ascites: results from a phase II/III study comparing paracentesis plus catumaxomab with paracentesis alone. Ann Oncol. 2012;23:1979–85.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Krueger CM, Berdov BA, Roman LA, Luft AV, Lampe P, Lindhofer H, Bartelheim K, Klein A, Heiss MM. Intraoperative, adjuvant treatment of gastric cancer with the trifunctional antibody catumaxomab Compared to surgery alone: a phase II study. J Clin Oncol. 2008;26(May 20 suppl):abstr 15529.Google Scholar
  194. 194.
    Ströhlein MA, Siegel R, Jäger M, Lindhofer H, Jauch KW, Heiss MM. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis. J Exp Clin Cancer Res. 2009;28:18.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Bokemeyer C, Stein A, Ridwelski K, Atanackovic D, Arnold D, Woll E, et al. A phase II study of catumaxomab administered intra- and postoperatively as part of a multimodal approach in primarily resectable gastric cancer. Gastric Cancer. 2015;18:833–42.PubMedGoogle Scholar
  196. 196.
    Goéré D, Gras-Chaput N, Aupérin A, Flament C, Mariette C, Glehen O, et al. Treatment of gastric peritoneal carcinomatosis by combining complete surgical resection of lesions and intraperitoneal immunotherapy using catumaxomab. BMC Cancer. 2014;14:148.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Stadlmann S, Amberger A, Pollheimer J, et al. Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol Oncol. 2005;97:784–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Yeo KT, Wang HH, Nagy JA, et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Res. 1993;53:2912–8.PubMedGoogle Scholar
  199. 199.
    Freeman MR, Schneck FX, Gagnon ML, et al. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res. 1995;55:4140–5.PubMedGoogle Scholar
  200. 200.
    Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.PubMedCrossRefGoogle Scholar
  201. 201.
    Senger DR, Perruzzi CA, Feder J, et al. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46:5629–32.PubMedGoogle Scholar
  202. 202.
    Luo JC, Toyoda M. Shibuya MDifferential inhibition of fluid accumulation and tumor growth in two mouse ascites tumors by an antivascular endothelial growth factor/permeability factor neutralizing antibody. Cancer Res. 1998;58:2594–600.PubMedGoogle Scholar
  203. 203.
    Shibuya M, Luo JC, Toyoda M, et al. Involvement of VEGF and its receptors in ascites tumor formation. Cancer Chemother Pharmacol. 1999;43(suppl):S72–7.PubMedCrossRefGoogle Scholar
  204. 204.
    Pichelmayer O, Zielinski C, Raderer M. Response of a nonmalignant pleural effusion to bevacizumab. N Engl J Med. 2005;353:740–1.PubMedCrossRefGoogle Scholar
  205. 205.
    Numnum TM, Rocconi RP, Whitworth J, et al. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol Oncol. 2006;102:425–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Hamilton CA, Maxwell GL, Chernofsky MR, et al. Intraperitoneal bevacizumab for the palliation of malignant ascites in refractory ovarian cancer. Gynecol Oncol. 2008;111:530–2.PubMedCrossRefGoogle Scholar
  207. 207.
    El-Shami K, Elsaid A, El-Kerm Y. Open-label safety and efficacy pilot trial of intraperitoneal bevacizumab as palliative treatment in refractory malignant ascites. J Clin Oncol. 2007;25(18 suppl):9043. Google Scholar
  208. 208.
    Satheesh CT, Patil S, Shashidhara HP. Intraperitoneal bevacizumab (Bev) for control of refractory malignant ascites. A single centre experience. Ann Oncol. 2016;27(suppl_6):1304P.  https://doi.org/10.1093/annonc/mdw384.05.CrossRefGoogle Scholar
  209. 209.
    Jordan K, Luetkens T, Gog C, Killing B, Arnold D, Hinke A, Stahl M, Freier W, Rüssel J, Atanackovic D, Hegewisch-Becker S. Intraperitoneal bevacizumab for control of malignant ascites due to advanced-stage gastrointestinal cancers: a multicentre double-blind, placebo-controlled phase II study - AIO SUP-0108. Eur J Cancer. 2016;63:127–34.  https://doi.org/10.1016/j.ejca.2016.05.004.PubMedCrossRefGoogle Scholar
  210. 210.
    Ansari N, Chandrakumaran K, Dayal S, Mohamed F, Cecil TD, Moran BJ. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur J Surg Oncol. 2016;42(7):1035–41.  https://doi.org/10.1016/j.ejso.2016.03.017.PubMedCrossRefGoogle Scholar
  211. 211.
    Lord AC, Shihab O, Chandrakumaran K, Mohamed F, Cecil TD, Moran BJ. Recurrence and outcome after complete tumour removal and hyperthermic intraperitoneal chemotherapy in 512 patients with pseudomyxoma peritonei from perforated appendiceal mucinous tumours. Eur J Surg Oncol. 2015;41(3):396–9.  https://doi.org/10.1016/j.ejso.2014.08.476.PubMedCrossRefGoogle Scholar
  212. 212.
    Gum JR Jr. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol. 1992;7:557–64.PubMedCrossRefGoogle Scholar
  213. 213.
    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.PubMedCrossRefGoogle Scholar
  214. 214.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. 2014;9:71.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Byrd JC, Sternberg LR, Yan P, Ho SB, Bresalier RS. Ectopic expression of MUC5 gastric mucin in colorectal adenocarcinoma. Gastroenterology. 1998;114:A573.CrossRefGoogle Scholar
  216. 216.
    Walsh MD, Clendenning M, Williamson E, Pearson SA, Walters RJ, Nagler B, Packenas D, Win AK, Hopper JL, Jenkins MA, Haydon AM, Rosty C, English DR, Giles GG, McGuckin MA, Young JP, et al. Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Mod Pathol. 2013;26:1642–56.PubMedCrossRefGoogle Scholar
  217. 217.
    Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta. 2014;1846:142–51.PubMedGoogle Scholar
  218. 218.
    Piver MS, Lele SB, Patsner B. Pseudomyxoma peritonei: possible prevention of mucinous ascites by peritoneal lavage. Obstet Gynecol. 1984;64(3 Suppl):95S–6S.PubMedCrossRefGoogle Scholar
  219. 219.
    Haid M, Bowie L, Kim D, Khandekar JD, Victor TA. Peritoneal washing therapy for pseudomyxoma peritonei. South Med J. 1981;74(8):913–5.PubMedCrossRefGoogle Scholar
  220. 220.
    Machado MA, Rodrigues JG, Laurino RM, Garrido Júnior A, Pinotti HW. Conservative treatment of pseudomyxoma peritonei. Rev Hosp Clin Fac Med Sao Paulo. 1993;48(6):301–4.PubMedGoogle Scholar
  221. 221.
    Shyr YM, Su CH, Wang HC, Lo SS, Lui WY. Pseudomyxoma peritonei: does a true mucolytic agent exist? In vitro and in vivo studies. Am Surg. 1995;61(3):265–70.PubMedGoogle Scholar
  222. 222.
    Shirasawa Y, Orita H, Ishida K, Morimoto Y, Matsumoto M, Sakabe T. Critical alkalosis following intraperitoneal irrigation with sodium bicarbonate in a patient with pseudomyxoma peritonei. J Anesth. 2008;22(3):278–81.  https://doi.org/10.1007/s00540-008-0612-8.PubMedCrossRefGoogle Scholar
  223. 223.
    Pillai K, Akhter J, Chua TC, Morris DL. Mucolysis by ascorbic acid and hydrogen peroxide on compact mucin secreted in pseudomyxoma peritonei. J Surg Res. 2012;174(2):e69–73.  https://doi.org/10.1016/j.jss.2011.10.038.PubMedCrossRefGoogle Scholar
  224. 224.
    Sadowska AM. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2012;6:127–35.PubMedCrossRefGoogle Scholar
  225. 225.
    Hu LH, Liu MH, Liao Z, Zou WB, Ye B, Wang L, Li ZS. Continuous infusion of N-acetylcysteine by nasobiliary for advanced intraductal papillary mucinous neoplasm of bile ducts (with video). Am J Gastroenterol. 2012;107:1929–30.PubMedCrossRefGoogle Scholar
  226. 226.
    Mata M, Ruiz A, Cerda M, Martinez-Losa M, Cortijo J, Santangelo F, Serrano-Mollar A, Llombart-Bosch A, Morcillo EJ. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats. Eur Respir J. 2003;22:900–5.PubMedCrossRefGoogle Scholar
  227. 227.
    Rogers DF, Turner NC, Marriott C, Jeffery PK. Oral N-acetylcysteine or S-carboxymethylcysteine inhibit cigarette smoke-induced hypersecretion of mucus in rat larynx and trachea in situ. Eur Respir J. 1989;2:955–60.Google Scholar
  228. 228.
    Pillai K, Akhter J, Chua TC, Morris DLA. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int J Cancer. 2014;134(2):478–86.  https://doi.org/10.1002/ijc.28380.PubMedCrossRefGoogle Scholar
  229. 229.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J Exp Clin Cancer Res CR. 2014;33(1):92.  https://doi.org/10.1186/s13046-014-0092-7. PubMedGoogle Scholar
  230. 230.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget. 2015;6(32):33329–44.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells. Am J Cancer Res. 2016;6(2):350–69.Google Scholar
  232. 232.
    Tomasz M, Palom Y. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol Ther. 1997;76:73–87.PubMedCrossRefGoogle Scholar
  233. 233.
    Cummings J, Spanswick VJ, Tomasz M, Smyth JF. Enzymology of mitomycin C metabolic activation in tumour tissue: implications for enzyme-directed bioreductive drug development. Biochem Pharmacol. 1998;56:405–14.PubMedCrossRefGoogle Scholar
  234. 234.
    Spanswick VJ, Cummings J, Smyth JF. Current issues in the enzymology of mitomycin C metabolic activation. Gen Pharmacol. 1998;31:539–44.PubMedCrossRefGoogle Scholar
  235. 235.
    Traver RD, Horikoshi T, Danenberg KD, et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 1992;52:797–802.PubMedGoogle Scholar
  236. 236.
    Mikami K, Naito M, Tomida A, et al. DT-diaphorase as a critical determinant of sensitivity to mitomycin C in human colon and gastric carcinoma cell lines. Cancer Res. 1996;56:2823–6.PubMedGoogle Scholar
  237. 237.
    Gan Y, Mo Y, Kalns JE, et al. Expression of DT-diaphorase and cytochrome P450 reductase correlates with mitomycin C activity in human bladder tumors. Clin Cancer Res. 2001;7:1313–9.PubMedGoogle Scholar
  238. 238.
    Fleming RA, Drees J, Loggie BW, et al. Clinical significance of a NAD(P)H: quinone oxidoreductase 1 polymorphism in patients with disseminated peritoneal cancer receiving intraperitoneal hyperthermic chemotherapy with mitomycin C. Pharmacogenetics. 2002;12:31–7.PubMedCrossRefGoogle Scholar
  239. 239.
    Orth K, Russ D, Steiner R, Beger HG. Fluorescence detection of small gastrointestinal tumours: principles, technique, first clinical experience. Langenbeck’s Arch Surg. 2000;385(7):488–94.CrossRefGoogle Scholar
  240. 240.
    Yano S, Hiroharab S, Obatac M, et al. Current states and future views in photodynamic therapy. J Photochem Photobiol C. 2011;12:46–67.  https://doi.org/10.1016/j.jphotochemrev.2011.06.001.CrossRefGoogle Scholar
  241. 241.
    Nokes B, Apel M, Jones C, Brown G, Lang JE. Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. J Surg Res. 2013;181:262–71.  https://doi.org/10.1016/j.jss.2013.02.002.PubMedCrossRefGoogle Scholar
  242. 242.
    Kishi K, Fujiwara Y, Yano M, et al. Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J Surg Oncol. 2012;106:294–8.  https://doi.org/10.1002/jso.23075.PubMedCrossRefGoogle Scholar
  243. 243.
    Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagn Photodyn Ther. 2013;10:331–41.  https://doi.org/10.1016/j.pdpdt.2013.03.011.CrossRefGoogle Scholar
  244. 244.
    Liu Y, Endo Y, Fujita T, et al. Cytoreductive surgery under aminolevulinic acid-mediated photodynamic diagnosis plus hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from ovarian cancer and primary peritoneal carcinoma: results of a phase I trial. Ann Surg Oncol. 2014;21(13):4256–62.  https://doi.org/10.1245/s10434-014-3901-5.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Cecil T, Allan P, Reddy S, Vrakas G, Giele H, Mohamed F, et al. Cytoreductive surgery and multivisceral small bowel transplantation. A technically feasible option for patients with end-stage pseudomyxoma peritonei (abstract). J Peritoneum. 2016;1(S1):11.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Surgical OncologyFortis HospitalBangaloreIndia
  2. 2.Peritoneal Malignancy Institute, Basingstoke & North Hampshire Hospital, Hampshire Hospitals NHS Foundation TrustBasingstokeUK

Personalised recommendations