Advertisement

Pseudomyxoma Peritonei Arising from Epithelial Appendiceal Tumours

  • Aditi Bhatt
  • Guillaume Passot
  • Olivier Glehen
Chapter

Abstract

Appendiceal tumours and pseudomyxoma peritonei (PMP) are both rare diseases that pose several diagnostic and therapeutic challenges. Appendiceal tumours are the source of PMP in most cases, and even those with benign histopathological features have a propensity for peritoneal spread. PMP has a varied biological behaviour. Over the past three decades, numerous classifications have been used to stratify these tumours according to their prognosis.

Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy, now considered the standard of care for PMP/peritoneal dissemination from appendiceal tumours, have led to a drastic improvement in survival. Selection of appropriate patients is vital for obtaining optimal results. It also leads to a reduction in morbidity and mortality. However, implementing this treatment is also associated with a prolonged learning curve for the surgeon and the institute both. Moreover, despite this aggressive therapy, these tumours have a high probability of recurrence. Treatment of subsequent recurrences can also result in a prolonged survival. A growing knowledge of the molecular biology of these tumours can be useful for further optimization of patient selection and in identifying targets for drug therapy in patients who are not surgical candidates. New therapeutic approaches like small bowel and multi-visceral transplant and mucin-lysing therapy are currently under investigation.

Keywords

Mucinous appendiceal tumours Pseudomyxoma peritonei Cytoreductive surgery HIPEC 

References

  1. 1.
    Shankar S, Ledakis P, El Halabi H, Gushchin V, Sardi A. Neoplasms of the appendix current treatment guidelines. Hematol Oncol Clin N Am. 2012;26:1261–90.CrossRefGoogle Scholar
  2. 2.
    Connor SJ, Hanna GB, Frizelle FA. Appendiceal tumors: retrospective clinicopathologic analysis of appendiceal tumors from 7,970 appendectomies. Dis Colon Rectum. 1998;41(1):75.PubMedCrossRefGoogle Scholar
  3. 3.
    Woodruff R, McDonald JR. Benign and malignant cystic tumors of the appendix. Surg Gynecol Obstet. 1940;71:750–5.Google Scholar
  4. 4.
    Carr NJ, McCarthy WF, Sobin LH. Epithelial noncarcinoid tumors and tumor-like lesions of the appendix. A clinicopathologic study of 184 patients with a multivariate analysis of prognostic factors. Cancer. 1995;75(3):757–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Misdraji J, Yantiss RK, Graeme-Cook FM, et al. Appendiceal mucinous neoplasms: a clinicopathologic analysis of 107 cases. Am J Surg Pathol. 2003;27(8):1089–103.PubMedCrossRefGoogle Scholar
  6. 6.
    Panarelli N, Yantiss R. Mucinous neoplasms of the appendix and peritoneum. Arch Pathol Lab Med. 2011;135(10):1261–8.  https://doi.org/10.5858/arpa.2011-0034-RA.PubMedCrossRefGoogle Scholar
  7. 7.
    Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, González-Moreno S, Taflampas P, Chapman S, Moran BJ. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated Appendiceal Neoplasia: the results of the peritoneal surface oncology group international (PSOGI) modified Delphi process. Am J Surg Pathol. 2016;40(1):14–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Subbuswamy SG, Gibbs NM, Ross CF, Morson BC. Goblet cell carcinoid of the appendix. Cancer. 1974;34:338–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Roy P, Chetty R. Goblet cell carcinoid tumors of the appendix: an overview. World J Gastrointest Oncol. 2010;2(6):251–8.  https://doi.org/10.4251/wjgo.v2.i6.251.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ihemelandu C, Sugarbaker PH. Clinicopathologic and prognostic features in patients with peritoneal metastasis from mucinous adenocarcinoma, adenocarcinoma with signet ring cells, and Adenocarcinoid of the appendix treated with cytoreductive surgery and perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2016;23(5):1474–80.  https://doi.org/10.1245/s10434-015-4995-0. Epub 2015 Nov 23.PubMedCrossRefGoogle Scholar
  11. 11.
    Esquivel J, Sugarbaker PH. Clinical presentation of the pseudomyxoma peritonei syndrome. Br J Surg. 2000;87:1414–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Sugarbaker PH. Pseudomyxoma peritonei and peritoneal metastases from appendiceal malignancy. In: Sugarbaker PH, editor. Cytoreductive surgery & perioperative chemotherapy for peritoneal surface malignancy. Textbook and video atlas. Woodbury, CT: Cine-Med Publishers; 2012.Google Scholar
  13. 13.
    González-Moreno S, Brun E, Sugarbaker PH. Lymph node metastasis in epithelial malignancies of the appendix with peritoneal dissemination does not reduce survival in patients treated by cytoreductive surgery and perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2005;12(1):72–80. Epub 2004 Dec 27.PubMedCrossRefGoogle Scholar
  14. 14.
    Foster JM, Gupta PK, Carreau JH, Grotz TE, Blas JV, Gatalica Z, Nath S, Loggie BW. Right hemicolectomy is not routinely indicated in pseudomyxoma peritonei. Am Surg. 2012;78(2):171–7.PubMedGoogle Scholar
  15. 15.
    Sugarbaker PH. When and when not to perform a right colon resection with mucinous appendiceal neoplasms. Ann Surg Oncol. 2016;24(3):729–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Smeenk RM, van Velthuysen ML, Verwaal VJ, et al. Appendiceal neoplasms and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol. 2008;34:196–201.PubMedCrossRefGoogle Scholar
  17. 17.
    Sammartino P, Biacchi D, Cornali T, Cardi M, Accarpio F, Impagnatiello A, Sollazzo BM, Di Giorgio A. Proactive management for gastric, colorectal and appendiceal malignancies: preventing peritoneal metastases with hyperthermic intraperitoneal chemotherapy (HIPEC). Indian J Surg Oncol. 2016;7(2):215–24.  https://doi.org/10.1007/s13193-016-0497-1. Epub 2016 Jan 26.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Murphy EM, Farquharson SM, Moran BJ. Management of an unexpected appendiceal neoplasm. Br J Surg. 2006;93:783–92.PubMedCrossRefGoogle Scholar
  19. 19.
    McDonald JR, O’Dwyer ST, Rout S, Chakrabarty B, Sikand K, Fulford PE, Wilson MS, Renehan AG. Classification of and cytoreductive surgery for low-grade appendiceal mucinous neoplasms. Br J Surg. 2012;99(7):987–92.  https://doi.org/10.1002/bjs.8739. Epub 2012 Apr 20.PubMedCrossRefGoogle Scholar
  20. 20.
    Honoré C, Caruso F, Dartigues P, Benhaim L, Chirica M, Goéré D, Elias D. Strategies for preventing pseudomyxoma peritonei after resection of a mucinous neoplasm of the appendix. Anticancer Res. 2015;35(9):4943–7.PubMedGoogle Scholar
  21. 21.
    Foster JM, et al. Early identification of DPAM in at-risk low-grade appendiceal mucinous neoplasm patients: a new approach to surveillance for peritoneal metastasis. World J Surg Oncol. 2016;14(1):243.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Young RH. Pseudomyxoma peritonei and selected other aspects of the spread of appendiceal neoplasms. Semin Diagn Pathol. 2004;21:134–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Pai RK, Longacre TA. Appendiceal mucinous tumors and pseudomyxoma peritonei: histologic features, diagnostic problems and proposed classification. Adv Anat Pathol. 2005;12:291–311.PubMedCrossRefGoogle Scholar
  24. 24.
    Agrawal AK, Bobiński P, Grzebieniak Z, Rudnicki J, Marek G, Kobielak P, Hałoń A. Pseudomyxoma peritonei originating from urachus—case report and review of the literature. Curr Oncol. 2014;21(1):e155–65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vang R, Gown AM, Zhao C, et al. Ovarian mucinous tumors associated with mature cystic teratomas: morphologic and immunohistochemical analysis identifies a subset of potential teratomatous origin that shares features of lower gastrointestinal tract mucinous tumors more commonly encountered as secondary tumors in the ovary. Am J Surg Pathol. 2007;31:854–69.PubMedCrossRefGoogle Scholar
  26. 26.
    McKenney JK, Soslow RA, Longacre TA. Ovarian mature teratomas with mucinous epithelial neoplasms: morphologic heterogeneity and association with pseudomyxoma peritonei. Am J Surg Pathol. 2008;32:645–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Stewart CJ, Ardakani NM, Doherty DA, et al. An evaluation of the morphologic features of low-grade mucinous neoplasms of the appendix metastatic in the ovary and a comparison with primary ovarian mucinous tumors. Int J Gynecol Pathol. 2014;33:1–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Hinson FL, Ambrose NS. Pseudomyxoma peritonei. Br J Surg. 1998;85:1332–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Sugarbaker PH. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann Surg. 1994;219:109–11.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Carmignani CP, Sugarbaker TA, Bromley CM, Sugarbaker PH. Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 2003;22:465–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Carr NJ, et al. Pathology and prognosis in pseudomyxoma peritonei: a review of 274 cases. J Clin Pathol. 2012;65(10):919–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Misdraji J. Appendiceal mucinous neoplasms: controversies. Arch Pathol Lab Med. 2010;134:864–70.PubMedGoogle Scholar
  33. 33.
    Ronnett BM, et al. Disseminated peritoneal adenomucinosis and peritoneal mucinous adenocarcinoma: a clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis and relationship to pseudomyxoma peritonei. Am J Surg Pathol. 1995;19(12):1390–408.PubMedCrossRefGoogle Scholar
  34. 34.
    Ronnett BM, Yan H, Kurman RJ, et al. Patients with pseudomyxoma peritonei associated with disseminated peritoneal adenomucinosis have a significantly more favorable prognosis than patients with peritoneal mucinous carcinomatosis. Cancer. 2001;92:85–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Bradley RF, Cortina G, Geisinger KR. Pseudomyxoma peritonei: review of the controversy. Curr Diagn Pathol. 2007;13(5):410–6.CrossRefGoogle Scholar
  36. 36.
    Carr NJ, Sobin LH. Adenocarcinoma of the appendix. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumors of the digestive system. Lyon: IARC; 2010. p. 122–5.Google Scholar
  37. 37.
    Sirintrapun SJ, Blackham AU, Russell G, et al. Significance of signet ring cells in high-grade mucinous adenocarcinoma of the peritoneum from appendiceal origin. Hum Pathol. 2014;45(8):1597–604.  https://doi.org/10.1016/j.humpath.2014.03.007.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Davison JM, Choudry HA, Pingpank JF, Ahrendt SA, Holtzman MP, Zureikat AH, Zeh HJ, Ramalingam L, Zhu B, Nikiforova M, Bartlett DL, Pai RK. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol. 2014;27(11):1521–39.  https://doi.org/10.1038/modpathol.2014.37.PubMedCrossRefGoogle Scholar
  39. 39.
    Lohani K, Shetty S, Sharma P, Govindarajan V, Thomas P, Loggie B. Pseudomyxoma peritonei: inflammatory responses in the peritoneal microenvironment. Ann Surg Oncol. 2014;21:1441–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Rachagani S, Torres MP, Moniaux N, Batra SK. Current status of mucins in the diagnosis and therapy of cancer. Biofactors. 2009;35:509–27.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J Rare Dis. 2014;9:71.  https://doi.org/10.1186/1750-1172-9-71.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    O’Connell JT, Tomlinson JS, Roberts AA, McGonigle KF, Barsky SH. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am J Pathol. 2002;161:551–64.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Connell JT, Hacker CM, Barsky SH. MUC2 is a molecular marker for pseudomyxoma peritonei. Mod Pathol. 2002;15:958–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee NK, Kim S, Kim HS, et al. Spectrum of mucin-producing neoplastic conditions of the abdomen and pelvis: cross-sectional imaging evaluation. World J Gastroenterol WJG. 2011;17(43):4757–71.  https://doi.org/10.3748/wjg.v17.i43.4757.PubMedCrossRefGoogle Scholar
  46. 46.
    Bevan KE, Mohamed F, Moran BJ. Pseudomyxoma peritonei. World J Gastrointest Oncol. 2010;2(1):44–50.  https://doi.org/10.4251/wjgo.v2.i1.44.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Baratti D, Kusamura S, Martinetti A, Seregni E, Laterza B, Oliva DG, Deraco M. Prognostic value of circulating tumor markers in patients with pseudomyxoma peritonei treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2007;14:2300–8.PubMedCrossRefGoogle Scholar
  48. 48.
    van Ruth S, Hart AA, Bonfrer JM, Verwaal VJ, Zoetmulder FA. Prognostic value of baseline and serial carcinoembryonic antigen and carbohydrate antigen 19.9 measurements in patients with pseudomyxoma peritonei treated with cytoreduction and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2002;9:961–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Carmignani CP, Hampton R, Sugarbaker CE, Chang D, Sugarbaker PH. Utility of CEA and CA 19-9 tumor markers in diagnosis and prognostic assessment of mucinous epithelial cancers of the appendix. J Surg Oncol. 2004;87:162–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Alexander-Sefre F, Chandrakumaran K, Banerjee S, Sexton R, Thomas JM, Moran B. Elevated tumour markers prior to complete tumour removal in patients with pseudomyxoma peritonei predict early recurrence. Color Dis. 2005;7:382–6.CrossRefGoogle Scholar
  51. 51.
    Diop AD, Fontarensky M, Montoriol PF, Da Ines D. CT imaging of peritoneal carcinomatosis and its mimics. Diagn Interv Imaging. 2014;95(9):861–72.  https://doi.org/10.1016/j.diii.2014.02.009.PubMedCrossRefGoogle Scholar
  52. 52.
    Koh JL, Yan TD, Glenn D, Morris DL. Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2009;16(2):327–33.  https://doi.org/10.1245/s10434-008-0234-2.PubMedCrossRefGoogle Scholar
  53. 53.
    Villeneuve L, Thivolet A, Bakrin N, Mohamed F, Isaac S, Valette PJ, Glehen O, Rousset P, BIG-RENAPE and RENAPE Working Groups. A new internet tool to report peritoneal malignancy extent. PeRitOneal MalIgnancy stage evaluation (PROMISE) application. Eur J Surg Oncol. 2016;42(6):877–82.  https://doi.org/10.1016/j.ejso.2016.03.015. Epub 2016 Mar 28.PubMedCrossRefGoogle Scholar
  54. 54.
    Jacquet P, Jelinek JS, Chang D, Koslowe P, Sugarbaker PH. Abdominal computed tomographic scan in the selection of patients with mucinous peritoneal carcinomatosis for cytoreductive surgery. J Am Coll Surg. 1995;181(6):530–8.PubMedGoogle Scholar
  55. 55.
    Cotte E, Passot G, Gilly F-N, Glehen O. Selection of patients and staging of peritoneal surface malignancies. World J Gastrointest Oncol. 2010;2(1):31–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dineen SP, Royal RE, Hughes MS, et al. A simplified preoperative assessment predicts complete cytoreduction and outcomes in patients with low-grade mucinous adenocarcinoma of the appendix. Ann Surg Oncol. 2015;22(11):3640–6.  https://doi.org/10.1245/s10434-015-4446-y.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the peritoneal cancer index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol. 2015;22:1708.  https://doi.org/10.1245/s10434-014-4041-7.PubMedCrossRefGoogle Scholar
  58. 58.
    Menassel B, Duclos A, Passot G, Dohan A, Payet C, Isaac S, Valette PJ, Glehen O, Rousset P. Preoperative CT and MRI prediction of non-resectability in patients treated for pseudomyxoma peritonei from mucinous appendiceal neoplasms. Eur J Surg Oncol. 2016;42(4):558–66.  https://doi.org/10.1016/j.ejso.2016.01.005. Epub 2016 Jan 22.PubMedCrossRefGoogle Scholar
  59. 59.
    Lansom J, Alzahrani N, Liauw W, Morris DL. Cytoreductive surgery and Hyperthermic Intraperitoneal chemotherapy for Pseudomyxoma peritonei and appendix tumours. Indian J Surg Oncol. 2016;7(2):166–76.  https://doi.org/10.1007/s13193-015-0478-9. Epub 2015 Oct 24.PubMedCrossRefGoogle Scholar
  60. 60.
    Passot G, Glehen O, Pellet O, Isaac S, Tychyj C, et al. Pseudomyxoma peritonei: role of 18F-FDG PET in preoperative evaluation of pathological grade and potential for complete cytoreduction. Eur J Surg Oncol. 2010;36(3):315.PubMedCrossRefGoogle Scholar
  61. 61.
    Mohamed F, et al. A new standard of care for the management of peritoneal surface malignancy. Curr Oncol. 2011;18(2):e84–96. ISSN 1718-7729.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Moran B, Baratti D, Yan TD, Kusamura S, Deraco M. Consensus statement on the locoregional treatment of appendiceal mucinous neoplasms with peritoneal dissemination (pseudomyxoma peritonei). J Surg Oncol. 2008;98(4):277–82.  https://doi.org/10.1002/jso.21054.PubMedCrossRefGoogle Scholar
  63. 63.
    Yan TD, Black D, Savady R, Sugarbaker PH. A systematic review on the efficacy of cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxoma peritonei. Ann Surg Oncol. 2007;14(2):484–92. Epub 2006 Oct 12.PubMedCrossRefGoogle Scholar
  64. 64.
    Gough DB, Donohue JH, Schutt AJ, Gonchoroff N, Goellner JR, Wilson TO, Naessens JM, O’Brien PC, van Heerden JA. Pseudomyxoma peritonei. Long-term patient survival with an aggressive regional approach. Ann Surg. 1994;219:112–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nitecki SS, Wolff BG, Schlinkert R, et al. The natural history of surgically treated primary adeno- carcinoma of the appendix. Ann Surg. 1994;219:51–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Miner TJ, Shia J, Jaques DP, Klimstra DS, Brennan MF, Coit DG. Long-term survival following treatment of pseudomyxoma peritonei: an analysis of surgical therapy. Ann Surg. 2005;241:300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Sugarbaker PH, Chang D. Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol. 1999;6:727–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Chua TC, Moran BJ, Sugarbaker PH, Levine EA, Glehen O, Gilly FN, Baratti D, Deraco M, Elias D, Sardi A, Liauw W, Yan TD, Barrios P, Gómez Portilla A, de Hingh IH, Ceelen WP, Pelz JO, Piso P, González-Moreno S, Van Der Speeten K, Morris DL. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30(20):2449–56.PubMedCrossRefGoogle Scholar
  69. 69.
    Ansari N, Chandrakumaran K, Dayal S, Mohamed F, Cecil TD, Moran BJ. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur J Surg Oncol. 2016;42(7):1035–41.  https://doi.org/10.1016/j.ejso.2016.03.017.PubMedCrossRefGoogle Scholar
  70. 70.
    Mehta SS, Bhatt A, Glehen O. Cytoreductive surgery and peritonectomy procedures. Indian J Surg Oncol. 2016;7(2):139–51.  https://doi.org/10.1007/s13193-016-0505-5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sugarbaker PH. Dissection by electrocautery with a ball tip. J Surg Oncol. 1994;56:246–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Dagbert F, Passot G, Glehen O, Bakrin N. Glisson capsulectomy for extensive superficial liver involvement in peritoneal carcinomatosis (with video). J Visc Surg. 2015;152(5):332–3.  https://doi.org/10.1016/j.jviscsurg.2015.08.002.PubMedCrossRefGoogle Scholar
  73. 73.
    Passot G, Kim BJ, Vaudoyer D, Kepenekian V, Bonnefoy I, Bakrin N, Cotte E, Glehen O. Digital Glissonectomy: a safe perihepatic peritonectomy. Ann Surg Oncol. 2016;23(12):3978–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Benhaim L, Honoré C, Goéré D, Delhorme JB, Elias D. Huge pseudomyxoma peritonei: surgical strategies and procedures to employ to optimize the rate of complete cytoreductive surgery. Eur J Surg Oncol. 2016;42(4):552–7.  https://doi.org/10.1016/j.ejso.2016.01.015.PubMedCrossRefGoogle Scholar
  75. 75.
    Sugarbaker PH. The subpyloric space: an important surgical and radiologic feature in pseudomyxoma peritonei. Eur J Surg Oncol. 2002;28(4):443–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Sugarbaker PH. Cytoreduction including total gastrectomy for pseudomyxoma peritonei. Br J Surg. 2002;89(2):208–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Piso P, Slowik P, Popp F, Dahlke MH, Glockzin G, Schlitt HJ. Safety of gastric resections during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis. Ann Surg Oncol. 2009;16(8):2188–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Deraco M, Baratti D, Kusamura S, Laterza B, Balestra MR. Surgical technique of parietal and visceral peritonectomy for peri-toneal surface malignancies. J Surg Oncol. 2009;100(4):321–8.  https://doi.org/10.1002/jso.21388.PubMedCrossRefGoogle Scholar
  79. 79.
    Di Fabio F, Mehta A, Chandrakumaran K, Mohamed F, Cecil T, Moran B. Advanced pseudomyxoma peritonei requiring gastrectomy to achieve complete cytoreduction results in good long-term oncologic outcomes. Ann Surg Oncol. 2016;23(13):4316–21. Epub 2016 Jul 5.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu Y, Mizumoto A, Ishibashi H, Takeshita K, Hirano M, Ichinose M, Takegawa S, Yonemura Y. Should total gastrectomy and total colectomy be considered for selected patients with severe tumor burden of pseudomyxoma peritonei in cytoreductive surgery? Eur J Surg Oncol. 2016;42(7):1018–23.  https://doi.org/10.1016/j.ejso.2016.04.059.PubMedCrossRefGoogle Scholar
  81. 81.
    Dagbert F, Bakrin N, Glehen O, Passot G. Colorectal resection with pelvic peritoneal carcinomatosis en-bloc resection in a male patient (with video). J Visc Surg. 2016;153(1):71–2.  https://doi.org/10.1016/j.jviscsurg.2015.11.006. Epub 2016 Jan 18.PubMedCrossRefGoogle Scholar
  82. 82.
    Sugarbaker PH. Avoiding diverting ileostomy in patients requiring complete pelvic peritonectomy. Ann Surg Oncol. 2015;23(5):1481–5.  https://doi.org/10.1245/s10434-015-4961-x.PubMedCrossRefGoogle Scholar
  83. 83.
    Riss S, Chandrakumaran K, Dayal S, Cecil TD, Mohamed F, Moran BJ. Risk of definitive stoma after surgery for peritoneal malignancy in 958 patients: comparative study between complete cytoreductive surgery and maximal tumor debulking. Eur J Surg Oncol. 2015;41(3):392–5.  https://doi.org/10.1016/j.ejso.2014.09.002.PubMedCrossRefGoogle Scholar
  84. 84.
    Esquivel J, Averbach A, Chua TC. Laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with limited peritoneal surface malignancies: feasibility, morbidity and outcome in an early experience. Ann Surg. 2011;253(4):764–8.  https://doi.org/10.1097/SLA.0b013e31820784df.PubMedCrossRefGoogle Scholar
  85. 85.
    Esquivel J, Averbach A. Laparoscopic cytoreductive surgery and HIPEC in patients with limited pseudomyxoma peritonei of appendiceal origin. Gastroenterol Res Pract. 2012;2012:1–5. 981245.CrossRefGoogle Scholar
  86. 86.
    Passot G, Bakrin N, Isaac S, Decullier E, Gilly FN, Glehen O, Cotte E. Postoperative outcomes of laparoscopic vs open cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for treatment of peritoneal surface malignancies. Eur J Surg Oncol. 2014;40(8):957–62.  https://doi.org/10.1016/j.ejso.2013.10.002. Epub 2013 Oct 16.PubMedCrossRefGoogle Scholar
  87. 87.
    Cecil T, Allan P, Reddy S, Vrakas G, Giele H, Mohamed F, et al. Cytoreductive surgery and multivisceral small bowel transplantation. A technically feasible option for patients with end-stage pseudomyxoma peritonei. J Peritoneum. 2016;1(S1):11.Google Scholar
  88. 88.
    Van der Speeten K, Stuart OA, Chang D, et al. Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemother Pharmacol. 2011;68:147.  https://doi.org/10.1007/s00280-010-1460-4.PubMedCrossRefGoogle Scholar
  89. 89.
    Witkamp AJ, van Coevorden F, Kaag MM, van Slooten GW, Beijnen JB, Boot H, et al. Dose finding study of hyperthermic intraperitoneal chemotherapy with mitomycin C in patients with carcinosis of colorectal origin. Eur J Surg Oncol. 1998;24:214.Google Scholar
  90. 90.
    Turaga K, Levine E, Barone R, et al. Consensus guidelines from the American Society of Peritoneal Surface Malignancies on standardizing the delivery of hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer patients in the United States. Ann Surg Oncol. 2014;21:1501.  https://doi.org/10.1245/s10434-013-3061-z.PubMedCrossRefGoogle Scholar
  91. 91.
    Elias D, Bonnay M, Puizillou JM, Antoun S, Demirdjian S, El OA, Pignon JP, Drouard-Troalen L, Ouellet JF, Ducreux M. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13(2):267–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Stewart JH, Shen P, Russell G, et al. A phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and Appendiceal cancers. Ann Surg Oncol. 2008;15(8):2137–45.  https://doi.org/10.1245/s10434-008-9967-1.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sugarbaker PH, Van der Speeten K. Surgical technology and pharmacology of hyperthermic perioperative chemotherapy. J Gastrointest Oncol. 2016;7(1):29–44.  https://doi.org/10.3978/j.issn.2078-6891.2015.105.PubMedPubMedCentralGoogle Scholar
  94. 94.
    De Somer F, Ceelen W, Delanghe J, De Smet D, Vanackere M, Pattyn P, Mortier E. Severe hyponatremia, hyperglycemia, and hyperlactatemia are associated with intraoperative hyperthermic intraperitoneal chemoperfusion with oxaliplatin. Perit Dial Int. 2008;28(1):61–6.PubMedGoogle Scholar
  95. 95.
    Ceelen W, De Somer F, Van Nieuwenhove Y, Vande Putte D, Pattyn P. Effect of perfusion temperature on glucose and electrolyte transport during hyperthermic intraperitoneal chemoperfusion (HIPEC) with oxaliplatin. Eur J Surg Oncol. 2013;39(7):754–9.  https://doi.org/10.1016/j.ejso.2012.07.120. Epub 2012 Aug 9.PubMedCrossRefGoogle Scholar
  96. 96.
    Mehta AM, Huitema AD, Burger JW, Brandt-Kerkhof AR, van den Heuvel SF, Verwaal VJ. Standard clinical protocol for bidirectional hyperthermic intraperitoneal chemotherapy (HIPEC): systemic Leucovorin, 5-fluorouracil, and heated intraperitoneal oxaliplatin in a chloride-containing carrier solution. Ann Surg Oncol. 2016;24(4):990–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Votanopoulos K, Ihemelandu C, Shen P, Stewart J, Russell G, Levine EA. A comparison of hematologic toxicity profiles after heated intraperitoneal chemotherapy with oxaliplatin and mitomycin C. J Surg Res. 2013;179(1):e133–9.  https://doi.org/10.1016/j.jss.2012.01.015.PubMedCrossRefGoogle Scholar
  98. 98.
    Charrier T, Passot G, Peron J, Maurice C, Gocevska S, Quénet F, Eveno C, Pocard M, Goere D, Elias D, Ortega-Deballon P, Vaudoyer D, Cotte E, Glehen O. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy with oxaliplatin increases the risk of postoperative hemorrhagic complications: analysis of predictive factors. Ann Surg Oncol. 2016;23(7):2315–22.  https://doi.org/10.1245/s10434-016-5143-1.PubMedCrossRefGoogle Scholar
  99. 99.
    Huang Y, Alzahrani NA, Liauw W, Traiki TB, Morris DL. Early postoperative intraperitoneal chemotherapy for low-grade Appendiceal mucinous neoplasms with pseudomyxoma peritonei: is it beneficial? Ann Surg Oncol. 2017;24(1):176–83.  https://doi.org/10.1245/s10434-016-5529-0.PubMedCrossRefGoogle Scholar
  100. 100.
    Lam JY, McConnell YJ, Rivard JD, Temple WJ, Mack LA. Hyperthermic intraperitoneal chemotherapy + early postoperative intraperitoneal chemotherapy versus hyperthermic intraperitoneal chemotherapy alone: assessment of survival outcomes for colorectal and high-grade appendiceal peritoneal carcinomatosis. Am J Surg. 2015;210(3):424–30.  https://doi.org/10.1016/j.amjsurg.2015.03.008.PubMedCrossRefGoogle Scholar
  101. 101.
    Wagner PL, Jones D, Aronova A, et al. Early postoperative intraperitoneal chemotherapy following cytoreductive surgery for appendiceal mucinous neoplasms with isolated peritoneal metastasis. Dis Colon Rectum. 2012;55:407–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Sørensen O, Flatmark K, Reed W, et al. Evaluation of complete cytoreductive surgery and two intraperitoneal chemotherapy techniques in pseudomyxoma peritonei. Eur J Surg Oncol. 2012;38:969–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Kusamura S, Moran B, Sugarbaker PH, et al. Multicentre study of the learning curve and surgical performance of cytoreductive surgery with intraperitoneal chemotherapy for pseudomyxoma peritonei. Br J Surg. 2014;101:1758–65.PubMedCrossRefGoogle Scholar
  105. 105.
    Sugarbaker PH. Cytoreductive surgery and perioperative chemotherapy: textbook and video atlas. Connecticut: Cine-Med Publishing; 2013.Google Scholar
  106. 106.
    Cummins KA, Russell GB, Votanopoulos KI, Shen P, Stewart JH, Levine EA. Peritoneal dissemination from high-grade appendiceal cancer treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). J Gastrointest Oncol. 2016;7(1):3–9.  https://doi.org/10.3978/j.issn.2078-6891.2015.101.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Sugarbaker PH. Peritoneum as the first-line of defense in carcinomatosis. J Surg Oncol. 2007;95(2):93–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Austin F, Mavanur A, Sathaiah M, et al. Aggressive management of peritoneal carcinomatosis from mucinous appendiceal neoplasms. Ann Surg Oncol. 2012;19(5):1386–93.  https://doi.org/10.1245/s10434-012-2241-6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wagner PL, Austin F, Zenati M, Jaech A, Mavanur A, Ramalingam L, Jones HL, Holtzman MP, Ahrendt SA, Zureikat AH, Pingpank JF, Zeh HJ, Bartlett DL, Choudry HA. Oncologic risk stratification following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for appendiceal carcinomatosis. Ann Surg Oncol. 2016;23(5):1587–93.  https://doi.org/10.1245/s10434-015-5037-7. Epub 2016 Jan 7.PubMedCrossRefGoogle Scholar
  110. 110.
    Delhorme JB, Elias D, Varatharajah S, Benhaim L, Dumont F, Honoré C, Goéré D. Can a benefit be expected from surgical debulking of unresectable pseudomyxoma peritonei? Ann Surg Oncol. 2016;23(5):1618–24.  https://doi.org/10.1245/s10434-015-5019-9. Epub 2015 Dec 17.PubMedCrossRefGoogle Scholar
  111. 111.
    Glehen O, Mohamed F, Sugarbaker PH. Incomplete cytoreduction in 174 patients with peritoneal carcinomatosis from appendiceal malignancy. Ann Surg. 2004;240:278–85.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Mohamed F, Moran BJ. Morbidity and mortality with cytoreductive surgery and intraperitoneal chemotherapy: the importance of a learning curve. Cancer J. 2009;15(3):196–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Newton AD, Bartlett EK, Karakousis GC. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: a review of factors contributing to morbidity and mortality. J Gastrointest Oncol. 2016;7(1):99–111.  https://doi.org/10.3978/j.issn.2078-6891.2015.100.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Elias D, Gilly F, Quenet F, et al. Pseudomyxoma peritonei: a French multicentric study of 301 patients treated with cytoreductive surgery and intraperitoneal chemotherapy. Eur J Surg Oncol. 2010;36:456–62.PubMedCrossRefGoogle Scholar
  115. 115.
    Kuijpers AM, Mirck B, Aalbers AG, et al. Cytoreduction and HIPEC in the Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20:4224–30.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Verwaal VJ, van Tinteren H, Ruth SV, Zoetmulder FAN. Toxicity of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Surg Oncol. 2004;85:61–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Kusamura S, Younan R, Baratti D, Costanzo P, Favaro M, Gavazzi C, et al. Cytoreductive surgery followed by intraperitoneal hyperthermic perfusion: analysis of morbidity and mortality in 209 peritoneal surface malignancies treated with closed abdomen technique. Cancer. 2006;106:1144–53.PubMedCrossRefGoogle Scholar
  118. 118.
    Stephens AD, Alderman R, Chang D, Edwards GD, Esquivel J, Sebbag G, et al. Morbidity and mortality analysis of 200 treatments with cytoreductive surgery and hyperthermic intraoperative intraperitoneal chemotherapy using the coliseum technique. Ann Surg Oncol. 1999;6:790–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Franko J, Gusani NJ, Holtzman MP, Ahrendt SA, Jones HL, Zeh HJ 3rd, Bartlett DL. Multivisceral resection does not affect morbidity and survival after cytoreductive surgery and chemoperfusion for carcinomatosis from colorectal cancer. Ann Surg Oncol. 2008;15(11):3065–72.PubMedCrossRefGoogle Scholar
  120. 120.
    Faris JE, Ryan DP. Controversy and consensus on the management of patients with pseudomyxoma peritonei. Curr Treat Options in Oncol. 2013;14(3):365–73.  https://doi.org/10.1007/s11864-013-0240-x.CrossRefGoogle Scholar
  121. 121.
    Asare EA, Compton CC, Hanna NN, Kosinski LA, Washington MK, Kakar S, Weiser MR, Overman MJ. The impact of stage, grade, and mucinous histology on the efficacy of systemic chemotherapy in adenocarcinomas of the appendix: analysis of the National Cancer Data Base. Cancer. 2016;122:213–21.  https://doi.org/10.1002/cncr.29744.PubMedCrossRefGoogle Scholar
  122. 122.
    Blackham AU, Swett K, Eng C, et al. Perioperative systemic chemotherapy for appendiceal mucinous carcinoma Peritonei treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Surg Oncol. 2014;109(7):740–5.  https://doi.org/10.1002/jso.23547.PubMedCrossRefGoogle Scholar
  123. 123.
    Pietrantonio F, Maggi C, Fanetti G, et al. FOLFOX-4 chemotherapy for patients with unresectable or relapsed peritoneal pseudomyxoma. Oncologist. 2014;19(8):845–50.  https://doi.org/10.1634/theoncologist.2014-0106.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Choe JH, Overman MJ, Fournier KF, Royal RE, Ohinata A, Rafeeq S, Beaty K, Phillips JK, Wolff RA, Mansfield PF, Eng C. Improved survival with anti-VEGF therapy in the treatment of unresectable appendiceal epithelial neoplasms. Ann Surg Oncol. 2015;22(8):2578–84.  https://doi.org/10.1245/s10434-014-4335-9.PubMedCrossRefGoogle Scholar
  125. 125.
    Farquharson AL, Pranesh N, Witham G, et al. A phase II study evaluating the use of concurrent mitomycin C and capecitabine in patients with advanced unresectable pseudomyxoma peritonei. Br J Cancer. 2008;99:591–6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sugarbaker PH, Bijelic L, Chang D, Yoo D. Neoadjuvant FOLFOX chemotherapy in 34 consecutive patients with mucinous peritoneal carcinomatosis of appendiceal origin. J Surg Oncol. 2010;102(6):576–81.  https://doi.org/10.1002/jso.21679.PubMedCrossRefGoogle Scholar
  127. 127.
    Shapiro JF, Chase JL, Wolff RA, Lambert LA, Mansfield PF, Overman MJ, Ohinata A, Liu J, Wang X, Eng C. Modern systemic chemotherapy in surgically unresectable neoplasms of appendiceal origin. Cancer. 2010;116:316–22.  https://doi.org/10.1002/cncr.24715.PubMedCrossRefGoogle Scholar
  128. 128.
    Turner KM, Hanna NN, Zhu Y, Jain A, Kesmodel SB, Switzer RA, Taylor LM, Richard Alexander H Jr. Assessment of neoadjuvant chemotherapy on operative parameters and outcome in patients with peritoneal dissemination from high-grade appendiceal cancer. Ann Surg Oncol. 2013;20(4):1068–73.  https://doi.org/10.1245/s10434-012-2789-1.PubMedCrossRefGoogle Scholar
  129. 129.
    Milovanov V, Sardi A, Ledakis P, Aydin N, Nieroda C, Sittig M, Nunez M, Gushchin V. Systemic chemotherapy (SC) before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with peritoneal mucinous carcinomatosis of appendiceal origin (PMCA). Eur J Surg Oncol. 2015;41(5):707–12.  https://doi.org/10.1016/j.ejso.2015.01.005.PubMedCrossRefGoogle Scholar
  130. 130.
    Piver MS, Lele SB, Patsner B. Pseudomyxoma peritonei: possible prevention of mucinous ascites by peritoneal lavage. Obstet Gynecol. 1984;64(3 Suppl):95S–6S.PubMedCrossRefGoogle Scholar
  131. 131.
    Haid M, Bowie L, Kim D, Khandekar JD, Victor TA. Peritoneal washing therapy for pseudomyxoma peritonei. South Med J. 1981;74(8):913–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Machado MA, Rodrigues JG, Laurino RM, Garrido Júnior A, Pinotti HW. Conservative treatment of pseudomyxoma peritonei. Rev Hosp Clin Fac Med Sao Paulo. 1993;48(6):301–4.PubMedGoogle Scholar
  133. 133.
    Shyr YM, Su CH, Wang HC, Lo SS, Lui WY. Pseudomyxoma peritonei: does a true mucolytic agent exist? In vitro and in vivo studies. Am Surg. 1995;61(3):265–70.PubMedGoogle Scholar
  134. 134.
    Shirasawa Y, Orita H, Ishida K, Morimoto Y, Matsumoto M, Sakabe T. Critical alkalosis following intraperitoneal irrigation with sodium bicarbonate in a patient with pseudomyxoma peritonei. J Anesth. 2008;22(3):278–81.  https://doi.org/10.1007/s00540-008-0612-8. Epub 2008 Aug 7.PubMedCrossRefGoogle Scholar
  135. 135.
    Pillai K, Akhter J, Chua TC, Morris DL. Mucolysis by ascorbic acid and hydrogen peroxide on compact mucin secreted in pseudomyxoma peritonei. J Surg Res. 2012;174(2):e69–73.  https://doi.org/10.1016/j.jss.2011.10.038. Epub 2011 Nov 19.PubMedCrossRefGoogle Scholar
  136. 136.
    Pillai K, Akhter J, Chua TC, Morris DL. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int J Cancer. 2014;134(2):478–86.  https://doi.org/10.1002/ijc.28380. Epub 2013 Aug 7.PubMedCrossRefGoogle Scholar
  137. 137.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Morris DL. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy. J Exp Clin Cancer Res. 2014;33(1):92.  https://doi.org/10.1186/s13046-014-0092-7.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Amini A, Masoumi-Moghaddam S, Ehteda A, Liauw W, Morris DL. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget. 2015;6(32):33329–44.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Lord AC, Shihab O, Chandrakumaran K, Mohamed F, Cecil TD, Moran BJ. Recurrence and outcome after complete tumour removal and hyperthermic intraperitoneal chemotherapy in 512 patients with pseudomyxoma peritonei from perforated appendiceal mucinous tumours. Eur J Surg Oncol. 2015;41(3):396–9.  https://doi.org/10.1016/j.ejso.2014.08.476.PubMedCrossRefGoogle Scholar
  140. 140.
    Yan TD, Bijelic L, Sugarbaker PH. Critical analysis of treatment failure after complete cytoreductive surgery and perioperative intraperitoneal chemotherapy for peritoneal dissemination from appendiceal mucinous neoplasms. Ann Surg Oncol. 2007;14(8):2289–99.PubMedCrossRefGoogle Scholar
  141. 141.
    Smeenk RM, Verwaal VJ, Antonini N, Zoetmulder FA. Progression of pseudomyxoma peritonei after combined modality treatment: management and outcome. Ann Surg Oncol. 2007;14(2):493–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Esquivel J, Sugarbaker PH. Second-look surgery in patients with peritoneal dissemination from appendiceal malignancy: analysis of prognostic factors in 98 patients. Ann Surg. 2001;234:198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Mogal H, Chouliaras K, Levine EA, Shen P, Votanopoulos KI. Repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: review of indications and outcomes. J Gastrointest Oncol. 2016;7(1):129–42.  https://doi.org/10.3978/j.issn.2078-6891.2015.131.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Mohamed F, Chang D, Sugarbaker PH. Third look surgery and beyond for appendiceal malignancy with peritoneal dissemination. J Surg Oncol. 2003;83:5–12.PubMedCrossRefGoogle Scholar
  145. 145.
    Chua TC, Liauw W, Zhao J, et al. Upfront compared to delayed cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxoma peritonei is associated with considerably lower perioperative morbidity and recurrence rate. Ann Surg. 2011;253:769–73.PubMedCrossRefGoogle Scholar
  146. 146.
    Sardi A, Jimenez WA, Nieroda C, et al. Repeated cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in peritoneal carcinomatosis from appendiceal cancer: analysis of survival outcomes. Eur J Surg Oncol. 2013;39:1207–13.PubMedCrossRefGoogle Scholar
  147. 147.
    Votanopoulos KI, Ihemelandu C, Shen P, et al. Outcomes of repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal surface malignancy. J Am Coll Surg. 2012;215:412–7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Dubreuil J, Giammarile F, Rousset P, Bakrin N, Passot G, Isaac S, Glehen O, Skanjeti A. FDG-PET/ceCT is useful to predict recurrence of pseudomyxoma peritonei. Eur J Nucl Med Mol Imaging. 2016;43(9):1630–7.  https://doi.org/10.1007/s00259-016-3347-z.PubMedCrossRefGoogle Scholar
  149. 149.
    Golse N, Bakrin N, Passot G, Mohamed F, Vaudoyer D, Gilly FN, Glehen O, Cotte E. Iterative procedures combining cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal recurrence: postoperative and long-term results. J Surg Oncol. 2012;106(2):197–203.  https://doi.org/10.1002/jso.23062. PMID: 22331814.PubMedCrossRefGoogle Scholar
  150. 150.
    Delhorme JB, Honoré C, Benhaim L, Dumont F, Dartigues P, Dromain C, Ducreux M, Elias D, Goéré D. Long-term survival after aggressive treatment of relapsed serosal or distant pseudomyxoma peritonei. Eur J Surg Oncol. 2017;43(1):159–67.  https://doi.org/10.1016/j.ejso.2016.08.021.PubMedCrossRefGoogle Scholar
  151. 151.
    Pietrantonio F, Perrone F, Mennitto A, et al. Toward the molecular dissection of peritoneal pseudomyxoma. Ann Oncol. 2016;27(11):2097–103.PubMedCrossRefGoogle Scholar
  152. 152.
    Kabbani W, Houlihan PS, Luthra R, Hamilton SR, Rashid A. Mucinous and nonmucinous appendiceal adenocarcinomas: different clinicopathological features but similar genetic alterations. Mod Pathol. 2002;15(6):599–605.PubMedCrossRefGoogle Scholar
  153. 153.
    Szych C, Staebler A, Connolly DC, Wu R, Cho KR, Ronnett BM. Molecular genetic evidence supporting the clonality and appendiceal origin of pseudomyxoma peritonei in women. Am J Pathol. 1999;154(6):1849–55.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zauber P, Berman E, Marotta S, Sabbath-Solitare M, Bishop T. Ki-ras gene mutations are invariably present in low-grade mucinous tumours of the vermiform appendix. Scand J Gastroenterol. 2011;46(7–8):869–74.PubMedCrossRefGoogle Scholar
  155. 155.
    Liu X, Mody K, de Abreu FB, et al. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin Chem. 2014;60:1004–11.PubMedCrossRefGoogle Scholar
  156. 156.
    Alakus H, Babicky ML, Ghosh P, et al. Genome- wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014;6:43.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Nummela P, Saarinen L, Thiel A, Järvinen P, Lehtonen R, Lepistö A, Järvinen H, Aaltonen LA, Hautaniemi S, Ristimäki A. Genomic profile of pseudomyxoma peritonei analyzed using next-generation sequencing and immunohistochemistry. Int J Cancer. 2015;136:E282–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Sio TT, Mansfield AS, Grotz TE, et al. Concur- rent MCL1 and JUN amplification in pseudomyxoma peritonei: a comprehensive genetic profiling and survival analysis. J Hum Genet. 2014;59:124–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature. 1989;340(6236):692–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, et al. Two G protein oncogenes in human endocrine tumors. Science. 1990;249(4969):655–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Nishikawa G, Sekine S, Ogawa R, et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br J Cancer. 2013;108(4):951–8.  https://doi.org/10.1038/bjc.2013.47.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Furukawa T, Kuboki Y, Tanji E, Yoshida S, Hatori T, Yamamoto M, Shibata N, Shimizu K, Kamatani N, Shiratori K. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Matsubara A, Sekine S, Kushima R, Ogawa R, Taniguchi H, Tsuda H, Kanai Y. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol. 2012; pub ahead of prime 3.  https://doi.org/10.1002/path.4153.
  164. 164.
    Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, Eshleman JR, Goggins M, Canto MI, Schulick RD, Edil BH, Wolfgang CL, Klein AP, Diaz LA, Allen PJ, Schmidt CM, Kinzler KW, Papadopoulos N, Hruban RH, Vogelstein B. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Yamada M, Sekine S, Ogawa R, Taniguchi H, Kushima R, Tsuda H, Kanai Y. Frequent activating GNAS mutations in villous adenoma of the colorectum. J Pathol. 2012;228(1):113–8.PubMedGoogle Scholar
  166. 166.
    Pietrantonio F, Berenato R, Maggi C, et al. GNAS mutations as prognostic biomarker in patients with relapsed peritoneal pseudomyxoma receiving metronomic capecitabine and bevacizumab: a clinical and translational study. J Transl Med. 2016;14:125.  https://doi.org/10.1186/s12967-016-0877-x.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Schonleben F, Qiu W, Bruckman KC, et al. BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/ IPMC) of the pancreas. Cancer Lett. 2007;249:242–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Shetty S, Thomas P, Ramanan B, Sharma P, Govindarajan V, Loggie B. Kras mutations and p53 overexpression in pseudomyxoma peritonei: association with phenotype and prognosis. J Surg Res. 2013;180:97–103.PubMedCrossRefGoogle Scholar
  169. 169.
    Noguchi R, Yano H, Gohda Y, et al. Molecular profiles of high-grade and low-grade pseudomyxoma peritonei. Cancer Med. 2015;4(12):1809–16.  https://doi.org/10.1002/cam4.542.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Aditi Bhatt
    • 1
  • Guillaume Passot
    • 2
    • 3
  • Olivier Glehen
    • 2
    • 3
  1. 1.Department of Surgical OncologyFortis HospitalBangaloreIndia
  2. 2.Department of Surgical OncologyCentre Hospitalier Lyon Sud, Hospices Civils de LyonPierre BéniteFrance
  3. 3.Université Lyon 1, EMR 3738OullinsFrance

Personalised recommendations