Cytoreductive Surgery and Intraperitoneal Chemotherapy for Advanced Epithelial Ovarian Cancer

Chapter

Abstract

Advanced epithelial ovarian cancer is a disease of the peritoneal cavity that has a propensity to recur in over 75% of the cases. Maximal cytoreductive surgery (CRS) that aims at complete removal of macroscopic disease combined with systemic chemotherapy is the standard of care for these patients. Surgery should be performed as early in the course of disease as possible to obtain the maximal benefit. Hence, upfront or primary CRS is the preferred strategy. When the patient is unfit for surgery or a complete CRS is not possible, few cycles of neoadjuvant chemotherapy are administered till the disease becomes operable. Normothermic intraperitoneal chemotherapy, despite its drawbacks and complications, has shown a significant survival benefit in addition to surgery and systemic chemotherapy. Hyperthermic intraperitoneal chemotherapy (HIPEC) is a logical and promising option for these patients though evidence to either support or refute its benefit is lacking. The results of randomized controlled trials in this setting are awaited. The treatment of advanced ovarian cancer is challenging; the recurrence rates continue to be high. Though response to chemotherapy is an important prognostic factor, the absolute benefit of radical surgery can be offset only in a very small percentage of patients that are complete responders. The two other important prognostic factors are the completeness of cytoreduction and the disease extent. There is a need to identify other prognostic and predictive factors in this setting for better patient selection for radical surgery and sequencing of therapies.

Keywords

Advanced ovarian cancer Cytoreductive surgery HIPEC Intraperitoneal chemotherapy for ovarian cancer 

References

  1. 1.
    Meinhold-Heerlein I, Fotopoulou C, Harter P, Kurzeder C, Mustea A, Wimberger P, Hauptmann S, Sehouli J. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet. 2016;293(4):695–700.  https://doi.org/10.1007/s00404-016-4035-8.PubMedCrossRefGoogle Scholar
  2. 2.
    Murdoch WJ, Martinchick JF. Oxidative damage to DNA of ovarian surface epithelial cells affected by ovulation: carcinogenic implication and chemoprevention. Exp Biol Med (Maywood). 2004;229:546–52.CrossRefGoogle Scholar
  3. 3.
    McCluggage WG. Morphological subtypes of ovarian carcinoma: a review with emphasis on new developments and pathogenesis. Pathology. 2011;43:420–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyd C, McCluggage WG. Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 2012;36:368–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Piek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001;195:451–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Soussi T, Ishioka C, Claustres M, et al. Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer. 2006;6:83–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkins AK, Jarboe EA, Saleemuddin A, et al. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol Oncol. 2008;109:168–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Shaw PA, Rouzbahman M, Pizer ES, et al. Candidate serous cancer precursors in fallopian tube epithelium of BRCA1/2 mutation carriers. Mod Pathol. 2009;22:1133–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kurman RJ, Shih I-M. The origin and pathogenesis of epithelial ovarian cancer- a proposed unifying theory. Am J Surg Pathol. 2010;34(3):433–43.  https://doi.org/10.1097/PAS.0b013e3181cf3d79.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 2008;9(12):1191–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Altaras MM, Aviram R, Cohen I, Cordoba M, Weiss E, Beyth Y. Primary peritoneal papillary serous adenocarcinoma: clinical and management aspects. Gynecol Oncol. 1991;40:230–6.PubMedCrossRefGoogle Scholar
  13. 13.
    August CZ, Murad TM, Newton M. Multiple focal extraovarian serous carcinoma. Int J Gynecol Pathol. 1985;4:11–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Dalrymple JC, Bannatyne P, Russell P, et al. Extraovarian peritoneal serous papillary carcinoma. Cancer. 1989;64:110–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Fromm G-L, Gershenson DM, Silva EG. Papillary serous carcinoma of the peritoneum. Obstet Gynecol. 1990;75:89–95.PubMedGoogle Scholar
  16. 16.
    Finch A, Beiner M, Lubinski J, et al. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation. JAMA. 2006;296:185–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Levine DA, Argenta PA, Yee CJ, et al. Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J Clin Oncol. 2003;21:4222–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Olivier RI, van Beurden M, Lubsen MA, Rookus MA, Mooij TM, van de Vijver MJ, van’t Veer LJ. Clinical outcome of prophylactic oophorectomy in BRCA1/BRCA2 mutation carriers and events during follow-up. Br J Cancer. 2004;90:1492–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cheng W, Liu J, Yoshida H, Rosen D, Naora H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med. 2005;11:531–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Partridge E, Kreimer AR, Greenlee RT, et al. Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol. 2009;113:775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Halkia E, Spiliotis J, Sugarbaker P. Diagnosis and management of peritoneal metastases from ovarian cancer. Gastroenterol Res Pract. 2012;2012:541842.  https://doi.org/10.1155/2012/541842.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Eisenkop SM, Spirtos NM. The clinical significance of occult macroscopically positive retroperitoneal nodes in patients with epithelial ovarian cancer. Gynecol Oncol. 2001;82(1):143–9.PubMedCrossRefGoogle Scholar
  24. 24.
    AJCC. Ovary and primary peritoneal carcinoma. In: AJCC cancer staging handbook. 7th ed. New York: Springer; 2009. p. 501–6.Google Scholar
  25. 25.
    Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351(24):2519–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Byrne AT, Ross L, Holash J, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res. 2003;9(15):5721–8.PubMedGoogle Scholar
  27. 27.
    Porcel J, Rodríguez-Panadero F. Malignant effusions. In: Maskell N, Millar A, editors. Oxford desk reference: respiratory medicine. Oxford: Oxford University Press; 2009. p. 342–5.Google Scholar
  28. 28.
    Friedman GD, Skilling JS, Udaltsova NV, Smith LH. Early symptoms of ovarian cancer: a case control study without recall bias. Fam Pract. 2005;22:548–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Jacobs I, Bast RC. The CA 125 tumour-associated antigen: a review of the literature. Hum Reprod. 1989;4:1–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Ando S, Kimura H, Iwai N, et al. Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in non–small cell lung cancer. Anticancer Res. 2003;23:2869–74.PubMedGoogle Scholar
  31. 31.
    Xiao WB, Liu YL. Elevation of serum and ascites cancer antigen 125 levels in patients with liver cirrhosis. J Gastroenterol Hepatol. 2003;18:1315–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Zidan J, Hussein O, Basher W, et al. Serum CA125: a tumour marker for monitoring response to treatment and follow-up in patients with non-Hodgkin’s lymphoma. Oncologist. 2004;9:417–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Yoo SC, Yoon JH, Lyu MO, Kim WY, Chang SJ, Chang KH, et al. Significance of postoperative CA-125 decline after cytoreductive surgery in stage IIIC/IV ovarian cancer. J Gynecol Oncol. 2008;19:169–72.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zwakman N, van de Laar R, Van Gorp T, et al. Perioperative changes in serum CA125 levels: a prognostic factor for disease-specific survival in patients with ovarian cancer. J Gynecol Oncol. 2017;28(1):e7.  https://doi.org/10.3802/jgo.2017.28.e7.PubMedCrossRefGoogle Scholar
  35. 35.
    Zivanovic O, Sima CS, Iasonos A, Bell-McGuinn KM, Sabbatini PJ, Leitao MM, et al. Exploratory analysis of serum CA-125 response to surgery and the risk of relapse in patients with FIGO stage IIIC ovarian cancer. Gynecol Oncol. 2009;115:209–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Vorgias G, Iavazzo C, Savvopoulos P, Myriokefalitaki E, Katsoulis M, Kalinoglou N, et al. Can the preoperative Ca-125 level predict optimal cytoreduction in patients with advanced ovarian carcinoma? A single institution cohort study. Gynecol Oncol. 2009;112:11–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Kang S, Kim T-J, Nam B-H, Seo S-S, Kim B-G, Bae D-S, et al. Preoperative serum CA-125 levels and risk of suboptimal cytoreduction in ovarian cancer: a meta-analysis. J Surg Oncol. 2010;101:13–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Memarzadeh S, Lee SB, Berek JS, Farias-Eisner R. CA125 levels are a weak predictor of optimal cytoreductive surgery in patients with advanced epithelial ovarian cancer. Int J Gynecol Cancer. 2003;13:120–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Gemer O, Lurian M, Gdalevich M, Kapustian V, Piura E, Schneider D, et al. A multicenter study of CA 125 level as a predictor of non-optimal primary cytoreduction of advanced epithelial ovarian cancer. Eur J Surg Oncol. 2005;31:1006–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Chi DS, Venkatraman ES, Masson V, Hoskins WJ. The ability of preoperative serum CA-125 to predict optimal primary tumor cytoreduction in stage III epithelial ovarian carcinoma. Gynecol Oncol. 2000;77:227–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Galgano MT, Hampton GM, Frierson HF. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod Pathol. 2006;19:847–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Moore RG, Brown AK, Miller MC, et al. The use of multiple novel tumour biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol. 2008;108:402–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Moore RG, McMeekin DS, Brown AK, et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009;112:40–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Simmons AR, Baggerly K, Bast RC. The emerging role of HE4 in the evaluation of advanced epithelial ovarian and endometrial carcinomas. Oncology (Williston Park). 2013;27(6):548–56.Google Scholar
  45. 45.
    Kalapotharakos G, Asciutto C, Henic E, et al. High preoperative blood levels of HE4 predicts poor prognosis in patients with ovarian cancer. J Ovarian Res. 2012;5(1):20. PMCID:3480899.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Forstner R. Radiological staging of ovarian cancer: imaging findings and contribution of CT and MRI. Eur Radiol. 2007;17(12):3223–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Forstner R. CT and MRI in ovarian carcinoma. In: Hamm B, Forstner R, editors. CT and MRI of the female pelvis. Berlin: Springer Verlag; 2006. p. 231–61.Google Scholar
  48. 48.
    Mitchell DG, Hill MC, Hill S, et al. Serous carcinoma of the ovary: CT identification of metastatic calcified implants. Radiology. 1986;158:649–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Glehen O, Mohamed F, Gilly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 2004;5(4):219–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Suidan RS, Ramirez PT, Sarasohn DM, Teitcher JB, Mironov S, Iyer RB, et al. A multicenter prospective trial evaluating the ability of preoperative computed tomography scan and serum CA-125 to predict suboptimal cytoreduction at primary debulking surgery for advanced ovarian, fallopian tube, and peritoneal cancer. Gynecol Oncol. 2014;134(3):455–61.  https://doi.org/10.1016/j.ygyno.2014.07.002.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Borley J, Wilhelm-Benartzi C, Yazbek J, Williamson R, Bharwani N, Stewart V, et al. Radiological predictors of cytoreductive outcomes in patients with advanced ovarian cancer. BJOG. 2015;122(6):843–9.  https://doi.org/10.1111/1471-0528.12992.PubMedCrossRefGoogle Scholar
  52. 52.
    Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Lampe B, Kroll N, Piso P, Forner DM, Mallmann P. Prognostic significance of Sugarbaker’s peritoneal cancer index for the operability of ovarian carcinoma. Int J Gynecol Cancer. 2015;25(1):135–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Villeneuve L, Thivolet A, Bakrin N, Mohamed F, Isaac S, Valette PJ, Glehen O, Rousset P, BIG-RENAPE and RENAPE Working Groups. A new internet tool to report peritoneal malignancy extent. PeRitOneal MalIgnancy stage evaluation (PROMISE) application. Eur J Surg Oncol. 2016;42(6):877–82.  https://doi.org/10.1016/j.ejso.2016.03.015. Epub 2016 Mar 28.PubMedCrossRefGoogle Scholar
  55. 55.
    Coakley FV, Choi PH, Gougoutas CA, et al. Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology. 2002;223:495–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Esquivel J, Chua TC, Stojadinovic A, et al. Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study. J Surg Oncol. 2010;102:565–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Rieber A, Nüssle K, Stöhr I, Grab D, Fenchel S, Kreienberg R, Reske SN, Brambs HJ. Preoperative diagnosis of ovarian tumors with MR imaging: comparison with transvaginal sonography, positron emission tomography, and histologic findings. AJR Am J Roentgenol. 2001;177(1):123–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Li H-M, Qiang J-W, Ma F-H, Zhao S-H. The value of dynamic contrast–enhanced MRI in characterizing complex ovarian tumors. J Ovarian Res. 2017;10:4.  https://doi.org/10.1186/s13048-017-0302-y.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ognong-Boulemo A, Dohan A, Hoeffel C, Stanek A, Golfier F, Glehen O, Valette PJ, Rousset P. Adnexal masses associated with peritoneal involvement: diagnosis with CT and MRI. Abdom Radiol (NY). 2017;42(7):1975–92.  https://doi.org/10.1007/s00261-017-1089-4. [Epub ahead of print].CrossRefGoogle Scholar
  60. 60.
    Low RN, Barone RM. Combined diffusion-weighted and gadolinium-enhanced MRI can accurately predict the peritoneal cancer index preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol. 2012;19:1394–401.  https://doi.org/10.1245/s10434-012-2236-3.PubMedCrossRefGoogle Scholar
  61. 61.
    Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the peritoneal cancer index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol. 2015;22:1708.  https://doi.org/10.1245/s10434-014-4041-7.PubMedCrossRefGoogle Scholar
  62. 62.
    Nougaret S, Addley HC, Colombo PE, Fujii S, Al Sharif SS, Tirumani SH, Jardon K, Sala E, Reinhold C. Ovarian carcinomatosis: how the radiologist can help plan the surgical approach. Radiographics. 2012;32(6):1775–1800.; discussion 1800-3.  https://doi.org/10.1148/rg.326125511.PubMedCrossRefGoogle Scholar
  63. 63.
    Michielsen K, Vergote I, Op de Beeck K, et al. Whole–body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24:889–901.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt S, Meuli RA, Achtari C, Prior JO. Peritoneal carcinomatosis in primary ovarian cancer staging: comparison between MDCT MRI and 18F-FDGPET/CT. Clin Nucl Med. 2015;40:371–7.  https://doi.org/10.1097/RLU.0000000000000768.PubMedCrossRefGoogle Scholar
  65. 65.
    Castellucci P, Perrone AM, Picchio M, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28:589–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Funicelli L, Travaini LL, Landoni F, Tri rò G, Bonello L, Bellomi M. Peritoneal carcinomatosis from ovarian cancer: the role of CT and [18F]FDG- PET/CT. Abdom Imaging. 2010;35(6):701–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshida Y, Kurokawa T, Kawahara K, et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol. 2004;182(1):227–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Seshadri RA, Hemanth Raj E. Diagnostic laparoscopy in the pre-operative assessment of patients undergoing cytoreductive surgery and HIPEC for peritoneal surface malignancies. Indian J Surg Oncol. 2016;7:230.  https://doi.org/10.1007/s13193-015-0486-9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fagotti A, Fanfani F, Ludovisi M, Lo Voi R, Bifulco G, Testa AC, et al. Role of laparoscopy to assess the chance of optimal cytoreductive surgery in advanced ovarian cancer: a pilot study. Gynecol Oncol. 2005;96:729–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Fagotti A, Ferrandina G, Fanfani F, Ercoli A, Lorusso D, Rossi M, et al. A laparoscopy-based score to predict surgical outcome in patients with advanced ovarian carcinoma: a pilot study. Ann Surg Oncol. 2006;13:1156–61.PubMedCrossRefGoogle Scholar
  71. 71.
    Brun JL, Rouzier R, Uzan S, Darai E. External validation of a laparoscopic-based score to evaluate resectability of advanced ovarian cancers: clues for a simplified score. Gynecol Oncol. 2008;110:354–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Fagotti A, Ferrandina G, Fanfani F, Garganese G, Vizzielli F, Carone V, et al. Prospective validation of a laparoscopic predictive model for optimal cytoreduction in advanced ovarian carcinoma. Am J Obstet Gynecol. 2008;199:642.e1–6.CrossRefGoogle Scholar
  73. 73.
    Fagotti A, Vizzielli G, Constantini B, Lecca A, Gallota V, Gagliardi ML, et al. Learning curve and pitfalls of a laparoscopic score to describe peritoneal carcinomatosis in advanced ovarian cancer. Acta Obstet Gynecol Scand. 2011;90:1126–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Fagotti A, Vizzielli G, De Iaco P, Surico D, Buda A, Mandato VD, et al. A multicentric trial (Olympia-MITO13) on the accuracy of laparoscopy to assess peritoneal spread in ovarian cancer. Am J Obstet Gynecol. 2013;209:462, e1–11.CrossRefGoogle Scholar
  75. 75.
    Rodríguez-Panadero F. Medical thoracoscopy. Respiration. 2008;76:363–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Díaz JP, Abu-Rustum NR, Sonoda Y, et al. Video-assisted thoracic surgery (VATS) evaluation of pleural effusions in patients with newly diagnosed advanced ovarian carcinoma can influence the primary management choice for these patients. Gynecol Oncol. 2010;116:483–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Westfall DE, Fan X, Marchevsky AN. Evidence-based guidelines to optimize the selection of antibody panels in cytopathology: pleural effusions with malignant epithelioid cells. Diagn Cytopathol. 2010;38:9–14.PubMedGoogle Scholar
  78. 78.
    Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet. 2014;124:1–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Ataseven B, Harter P, Grimm C, Heitz F, Heikaus S, Traut A, Kahl A, Kurzeder C, Prader S, du Bois A. The revised 2014 FIGO staging system for epithelial ovarian cancer: is a subclassification into FIGO stage IVA and IVB justified? Gynecol Oncol. 2016;142(2):243–7.  https://doi.org/10.1016/j.ygyno.2016.05.021. Epub 2016 May 25.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoskins WJ, McGuire WP, Brady MF, et al. The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol. 1994;170:974–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Meigs JV. Tumors of the female pelvic organs. New York: MacMillan; 1934.Google Scholar
  82. 82.
    Griffiths CT. Surgical resection of tumor bulk in the primary treatment of ovarian carcinoma. Natl Cancer Inst Monogr. 1975;42:101–4.PubMedGoogle Scholar
  83. 83.
    Hoskins WJ, Bundy BN, Thigpen JT, Omura GA. The influence of cytoreductive surgery on recurrence-free interval and survival in small-volume stage III epithelial ovarian cancer: a gynecologic oncology group study. Gynecol Oncol. 1992;47:159–66.PubMedCrossRefGoogle Scholar
  84. 84.
    Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20(5):1248–59.PubMedCrossRefGoogle Scholar
  85. 85.
    Whitney CW, Spirtos N. Gynecologic oncology group surgical procedures manual. Philadelphia: Philadelphia Gynecologic Oncology Group; 2009.Google Scholar
  86. 86.
    Chi DS, Ramirez PT, Teitcher JB, et al. Prospective study of the correlation between postoperative computed tomography scan and primary surgeon assessment in patients with advanced ovarian, tubal, and peritoneal carcinoma reported to have undergone primary surgical cytoreduction to residual disease 1 cm or less. J Clin Oncol. 2007;25:4946–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Aletti GD, Dowdy SC, Podratz KC, Cliby WA. Surgical treatment of diaphragm disease correlates with improved survival in optimally debulked advanced stage ovarian cancer. Gynecol Oncol. 2006;100:283–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Eisenhauer EL, Abu-Rustum NR, Sonoda Y, et al. The addition of extensive upper abdominal surgery to achieve optimal cytoreduction improves survival in patients with stages IIIC-IV epithelial ovarian cancer. Gynecol Oncol. 2006;103:1083–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Eisenkop SM, Spirtos NM, Friedman RL, et al. Relative influences of tumor volume before surgery and the cytoreductive outcome on survival for patients with advanced ovarian cancer: a prospective study. Gynecol Oncol. 2003;90:390–6.  https://doi.org/10.1016/S0090-8258(03)00278-6.PubMedCrossRefGoogle Scholar
  90. 90.
    Chi DS, Eisenhauer EL, Zivanovic O, et al. Improved progression-free and overall survival in advanced ovarian cancer as a result of a change in surgical paradigm. Gynecol Oncol. 2009;114:26–31.  https://doi.org/10.1016/j.ygyno.2009.03.018.PubMedCrossRefGoogle Scholar
  91. 91.
    Eitan R, Levine DA, Abu-Rustum N, et al. The clinical significance of malignant pleural effusions in patients with optimally debulked ovarian carcinoma. Cancer. 2005;103:1397–401.PubMedCrossRefGoogle Scholar
  92. 92.
    Mironov O, Ishill NM, Mironov S, et al. Pleural effusion detected at CT prior to primary cytoreduction for stage III or IV ovarian carcinoma: effect on survival. Radiology. 2011;258:776–84.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Eisenkop SM. Thoracoscopy for the management of advanced epithelial ovarian cancer—a preliminary report. Gynecol Oncol. 2002;84:315–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Porcel JM, Diaz JP, Chi DS. Clinical implications of pleural effusions in ovarian cancer. Respirology. 2012;17:1060–7.  https://doi.org/10.1111/j.1440-1843.2012.02177.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Redman CWE, Warwick J, Luesley DM, Varman R, Lawton FG, Blackledge GRP. Intervention debulking surgery in advanced epithelial ovarian cancer. Br J Obstet Gynecol. 1994;101:142–6.CrossRefGoogle Scholar
  96. 96.
    van der Burg MEL, van Lent M, Buyse M, Kobierska A, Colombo N, Favalli G, et al. The effect of debulking surgery after induction chemotherapy on the prognosis I advanced epithelial ovarian cancer. N Engl J Med. 1995;332:629–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Rose PG, Nerenstone S, Brady MF, Clarke-Pearson D, Olt G, Rubin SC, et al. Secondary surgical cytoreduction for advanced ovarian carcinoma. N Engl J Med. 2004;351:2489–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Pecorelli S, Odicino F, Favalli G. Interval debulking surgery in advanced epithelial ovarian cancer. Best Prac Res Clin Obstet Gynaecol. 2002;16:573–83.CrossRefGoogle Scholar
  99. 99.
    Baekelandt M. The potential role of neoadjuvant chemotherapy in advanced ovarian cancer. Int J Gynecol Cancer. 2003;13:163–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Bristow RE, Chi DS. Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: a meta-analysis. Gynecol Oncol. 2006;103:1070–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Vergote I, Trope CG, Amant F, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010;363:943–53.  https://doi.org/10.1056/NEJMoa0908806.PubMedCrossRefGoogle Scholar
  102. 102.
    Kehoe S, Hook J, Nankivell M, et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lancet. 2015;386:249–57.PubMedCrossRefGoogle Scholar
  103. 103.
    Chi DS, Bristow RE, Armstrong DK, et al. Is the easier way ever the better way? J Clin Oncol. 2011;29:4073–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Makar AP, Tropé CG, Tummers P, Denys H, Vandecasteele K. Advanced ovarian cancer: primary or interval debulking? Five categories of patients in view of the results of randomized trials and tumour biology: primary debulking surgery and interval debulking surgery for advanced ovarian cancer. Oncologist. 2016;21(6):745–54.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Colombo PE, Mourregot A, Fabbro M, et al. Aggressive surgical strategies in advanced ovarian cancer: a monocentric study of 203 stage IIIC and IV patients. Eur J Surg Oncol. 2009;35:135–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Winter WE 3rd, Maxwell GL, Tian C, et al. Prognostic factors for stage III epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2007;25:3621–7.PubMedCrossRefGoogle Scholar
  107. 107.
    du Bois A, Reuss A, Pujade-Lauraine E, et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer. 2009;115:1234–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Winter WE 3rd, Maxwell GL, Tian C, et al. Tumor residual after surgical cytoreduction in prediction of clinical outcome in stage IV epithelial ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2008;26:83–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Chi DS, Musa F, Dao F, et al. An analysis of patients with bulky advanced stage ovarian, tubal, and peritoneal carcinoma treated with primary debulking surgery (PDS) during an identical time period as the randomized EORTC-NCIC trial of PDS vs neoadjuvant chemotherapy (NACT). Gynecol Oncol. 2012;124:10–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63:1727–33.PubMedGoogle Scholar
  111. 111.
    Rauh-Hain JA, Rodriguez N, Growdon WB, et al. Primary debulking surgery versus neoadjuvant chemotherapy in stage IV ovarian cancer. Ann Surg Oncol. 2012;19:959–65.PubMedCrossRefGoogle Scholar
  112. 112.
    Gadducci A, Cosio S, Zizioli V, Notaro S, Tana R, Panattoni A, Sartori E. Patterns of recurrence and clinical outcome of patients with stage IIIC to stage IV epithelial ovarian cancer in complete response after primary debulking surgery plus chemotherapy or neoadjuvant chemotherapy followed by interval debulking surgery: an Italian multicenter retrospective study. Int J Gynecol Cancer. 2017;27(1):28–36.PubMedCrossRefGoogle Scholar
  113. 113.
    Hynninen J, Lavonius M, Oksa S, et al. Is perioperative visual estimation of intra-abdominal tumor spread reliable in ovarian cancer surgery after neoadjuvant chemotherapy? Gynecol Oncol. 2013;128:229–32.PubMedCrossRefGoogle Scholar
  114. 114.
    Chiva L, Lapuente F, Castellanos T, Alonso S, Gonzalez-Martin A. What should we expect after a complete cytoreduction at the time of interval or primary debulking surgery in advanced ovarian cancer? Ann Surg Oncol. 2016;23(5):1666–73.  https://doi.org/10.1245/s10434-015-5051-9. Epub 2015 Dec 29. PMID: 26714955.PubMedCrossRefGoogle Scholar
  115. 115.
    Rauh-Hain JA, Melamed A, Wright A, Gockley A, Clemmer JT, Schorge JO, Del Carmen MG, Keating NL. Overall survival following Neoadjuvant chemotherapy vs primary cytoreductive surgery in women with epithelial ovarian cancer: analysis of the National Cancer Database. JAMA Oncol. 2017;3(1):76–82.  https://doi.org/10.1001/jamaoncol.2016.4411.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bijelic L, Kumar AS, Stuart OA, Sugarbaker PH. Systemic chemotherapy prior to cytoreductive surgery and HIPEC for carcinomatosis from appendix cancer: impact on perioperative outcomes and short-term survival. Gastroenterol Res Pract. 2012;2012:163284.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Passot G, You B, Boschetti G, Fontaine J, et al. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis. Ann Surg Oncol. 2014;21:2608–14.  https://doi.org/10.1245/s10434-014-3647-0. Epub 2014 Mar 26.PubMedCrossRefGoogle Scholar
  118. 118.
    Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, Liersch T, Hohenberger W, Raab R, Sauer R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Pathol. 2005;23:8688–96.Google Scholar
  119. 119.
    Jass JR, O'Brien J, Riddell RH, Snover DC. Association of directors of anatomic and surgical pathology recommendations for the reporting of surgically resected specimens of colorectal carcinoma. Am J Clin Pathol. 2008;129:13–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Samrao D, Wang D, Ough F, et al. Histologic parameters predictive of disease outcome in women with advanced stage ovarian carcinoma treated with neoadjuvant chemotherapy. Transl Oncol. 2012;5(6):469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Muraji M, Sudo T, Iwasaki S, Ueno S, Wakahashi S, Yamaguchi S, et al. Histopathology predicts clinical outcome in advanced epithelial ovarian cancer patients treated with neoadjuvant chemotherapy and debulking surgery. Gynecol Oncol. 2013;131:531–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Böhm S, Faruqi A, Said I, et al. Chemotherapy response score: development and validation of a system to quantify histopathologic response to neoadjuvant chemotherapy in tubo-ovarian high-grade serous carcinoma. J Clin Oncol. 2015;33(22):2457–63.  https://doi.org/10.1200/JCO.2014.60.5212.PubMedCrossRefGoogle Scholar
  123. 123.
    Sugarbaker PH. An overview of peritonectomy, visceral resections and perioperative chemotherapy for peritoneal surface malignancy. In: Sugarbaker PH, editor. Cytoreductive surgery & perioperative chemotherapy for peritoneal surface malignancy. Textbook and video atlas. Woodbury: Cine-Med Publishers; 2012.Google Scholar
  124. 124.
    Mehta SS, Bhatt A, Glehen O. Cytoreductive surgery and peritonectomy procedures. Indian J Surg Oncol. 2016;7(2):139–51.  https://doi.org/10.1007/s13193-016-0505-5.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Burghardt E, Girardi F, Lahousen M, Tamussino K, Stettner H. Patterns of pelvic and paraaortic lymph node involvement in ovarian cancer. Gynecol Oncol. 1991;40:103–6.PubMedCrossRefGoogle Scholar
  126. 126.
    du Bois A, Reuss A, Harter P, Pujade-Lauraine E, Ray-Coquard I, Pfisterer J. Potential role of lymphadenectomy in advanced ovarian cancer: a combined exploratory analysis of three prospectively randomized phase III multicenter trials. J Clin Oncol. 2010;28:1733–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Bachmann C, Brucker SY, Kraemer B, Rothmund R, Staebler A, Fend F, Wallwiener D, Grischke EM. The prognostic relevance of node metastases in optimally cytoreduced advanced ovarian cancer. J Cancer Res Clin Oncol. 2015;141:1475–80.PubMedCrossRefGoogle Scholar
  128. 128.
    di Re F, Baiocchi G, Fontanelli R, et al. Systematic pelvic and paraaortic lymphadenectomy for advanced ovarian cancer: prognostic significance of node metastases. Gynecol Oncol. 1996;62:360–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Kikkawa F, Ishikawa H, Tamakoshi K, Suganuma N, Mizuno K, Kawai M, Arii Y, et al. Prognostic evaluation of lymphadenectomy for epithelial ovarian cancer. J Surg Oncol. 1995;60:227–31.PubMedCrossRefGoogle Scholar
  130. 130.
    Panici PB, Maggioni A, Hacker N, Landoni F, Ackermann S, Campagnutta E, Tamussino K, Winter R, Pellegrino A, Greggi S, Angioli R, Manci N, Scambia G, et al. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst. 2005;97:560–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Ataseven B, Grimm C, Harter P, Prader S, Traut A, Heitz F, du Bois A. Prognostic value of lymph node ratio in patients with advanced epithelial ovarian cancer. Gynecol Oncol. 2014;135:435–40.PubMedCrossRefGoogle Scholar
  132. 132.
    Spirtos NM, Gross GM, Freddo JL, et al. Cytoreductive surgery in advanced epithelial ovarian cancer of the ovary: the impact of aortic and pelvic lymphadenectomy. Gynecol Oncol. 1995;56:345–52.PubMedCrossRefGoogle Scholar
  133. 133.
    Bristow RE, Zahurak ML, Alexander CJ, Zellars RC, Montz FJ. FIGO stage IIIC endometrial carcinoma: resection of macroscopic nodal disease and other determinants of survival. Int J Gynecol Cancer. 2003;13:664–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhou J, He Z-Y, Li F-Y, et al. Multiple focal extraovarian serous carcinoma. Int J Gynecol Pathol Oncotarget. 2016;7(7):7952–59. https://doi.org/10.18632/oncotarget.6911.
  135. 135.
    Harter P, Sehouli J, Lorusso D, et al. LION: Lymphadenectomy in ovarian neoplasms—A prospective randomized AGO study group led gynecologic cancer intergroup trial. J Clin Oncol. 2017; 35. (suppl; abstr 5500).Google Scholar
  136. 136.
    Lim M, Song Y, Seo S, Yoo C, Kang S, Park S. Residual cancer stem cells after interval cytoreductive surgery following neoadjuvant chemotherapy could result in poor treatment outcomes for ovarian cancer. Onkologie. 2010;33:324–30.PubMedCrossRefGoogle Scholar
  137. 137.
    Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells. 2002;20:11–20.PubMedCrossRefGoogle Scholar
  138. 138.
    Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008;18:506–14.PubMedCrossRefGoogle Scholar
  139. 139.
    Hombach-Klonisch S, Paranjothy T, Wiechec E, Pocar P, Mustafa T, Seifert A, Zahl C, Gerlach KL, Biermann K, Steger K, Hoang-Vu C, SchulzeOsthoff K, Los M. Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch Immunol Ther Exp. 2008;56:165–80.CrossRefGoogle Scholar
  140. 140.
    Skipper HE. Adjuvant chemotherapy. Cancer. 1978;41:936–40.PubMedCrossRefGoogle Scholar
  141. 141.
    Cotte E, Colomban O, Guitton J, et al. Population pharmacokinetics and pharmacodynamics of cisplatinum during hyperthermic intraperitoneal chemotherapy using a closed abdominal procedure. J Clin Pharmacol. 2011;51(1):9–18.PubMedCrossRefGoogle Scholar
  142. 142.
    Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335:1950–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the gynecologic oncology group, southwestern oncology group, and eastern cooperative oncology group. J Clin Oncol. 2001;19:1001–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in Ovarian cancer. N Engl J Med. 2006;354:34–43.  https://doi.org/10.1056/NEJMoa052985.PubMedCrossRefGoogle Scholar
  145. 145.
    Elit L, Oliver TK, Covens A, Kwon J, Fung MK, Hirte HW, Oza AM. Intraperitoneal chemotherapy in the first-line treatment of women with stage III epithelial ovarian cancer: a systematic review with meta analyses. Cancer. 2007;109:692–702.PubMedCrossRefGoogle Scholar
  146. 146.
    Wright AA, Cronin A, Milne DE, et al. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J Clin Oncol. 2015;33(26):2841–7.  https://doi.org/10.1200/JCO.2015.61.4776.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Tewari D, Java JJ, Salani R, et al. Long-term survival advantage and prognostic factors associated with intraperitoneal chemotherapy treatment in advanced ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2015;33(13):1460–6.  https://doi.org/10.1200/JCO.2014.55.9898.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hettinga VE. Reduction of cisplatin resistance by hyperthermia (PhD Thesis, Univ. of Groningen, ISBN 90-367-0648-3) (Printpartners Ipskamp bv, Enschede), 1996.Google Scholar
  149. 149.
    Hetting VE, Lemstra W, Meijer C, et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin sensitive and -resistant tumor cells. Br J Cancer. 1997;75:1735–43.CrossRefGoogle Scholar
  150. 150.
    Hettinga JV, Konings AW, Kampinga HH. Reduction of cellular cisplatin resistance by hyperthermia — a review. Int J Hyperth. 1997;13:439–57.CrossRefGoogle Scholar
  151. 151.
    van de Vaart PJ, van der Vange N, Zoetmulder FA, van Goethem AR, van Tellingen O, ten Bokkel Huinink WW, Beijnen JH, Bartelink H, Begg AC. Intraperitoneal cisplatin with regional hyperthermia in advanced ovarian cancer: pharmacokinetics and cisplatin-DNA adduct formation in patients and ovarian cancer cell lines. Eur J Cancer. 1998;34(1):148–54.PubMedCrossRefGoogle Scholar
  152. 152.
    Yan TD, Deraco M, Baratti D, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27:6237–42.  https://doi.org/10.1200/JCO.2009.23.9640.PubMedCrossRefGoogle Scholar
  153. 153.
    Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28:63–8.  https://doi.org/10.1200/JCO.2009.23.9285.PubMedCrossRefGoogle Scholar
  154. 154.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15:2426–32.  https://doi.org/10.1245/s10434-008-9966-2.PubMedCrossRefGoogle Scholar
  155. 155.
    Glehen O, Gilly FN, Arvieux C, et al. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann Surg Oncol. 2010;17(9):2370–7.  https://doi.org/10.1245/s10434-010-1039-7.PubMedCrossRefGoogle Scholar
  156. 156.
    Glehen O, Passot G, Villeneuve L, et al. GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: a randomized and multi-center phase III study. BMC Cancer. 2014;14:183.  https://doi.org/10.1186/1471-2407-14-183.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Mulier S, Claes JP, Dierieck V, Amiel JO, Pahaut JP, Marcelis L, Bastin F. Survival benefit of adding Hyperthermic IntraPEritoneal chemotherapy (HIPEC) at the different time-points of treatment of ovarian cancer: review of evidence. Curr Pharm Des. 2012;18:3793–803.  https://doi.org/10.2174/138161212802002616.PubMedCrossRefGoogle Scholar
  158. 158.
    Elias DM, Ouellet JF. Intraperitoneal chemohyperthermia: rationale, technique, indications, and results. Surg Oncol Clin N Am. 2001;10:915–33. [xi].PubMedGoogle Scholar
  159. 159.
    Gouy S, Ferron G, Glehen O, Bayar A, Marchal F, Pomel C, Quenet F, Bereder JM, Le Deley MC, Morice P. Results of a multicenter phase I dose-finding trial of hyperthermic intraperitoneal cisplatin after neoadjuvant chemotherapy and complete cytoreductive surgery and followed by maintenance bevacizumab in initially unresectable ovarian cancer. Gynecol Oncol. 2016;142(2):237–42.  https://doi.org/10.1016/j.ygyno.2016.05.032. Epub 2016 Jun 2.PubMedCrossRefGoogle Scholar
  160. 160.
    Zivanovic O, Abramian A, Kullmann M, Fuhrmann C, Coch C, Hoeller T, Ruehs H, Keyver-Paik MD, Rudlowski C, Weber S, Kiefer N, Poelcher ML, Thiesler T, Rostamzadeh B, Mallmann M, Schaefer N, Permantier M, Latten S, Kalff J, Thomale J, Jaehde U, Kuhn WC. HIPEC ROC I: a phase 1 study of cisplatin administered as hyperthermic intraoperative intraperitoneal chemoperfusion followed by postoperative intravenous platinum-based chemotherapy in patients with platinum-sensitive recurrent epithelial ovarian cancer. Int J Cancer. 2015;136:699–708.  https://doi.org/10.1002/ijc.29011.PubMedGoogle Scholar
  161. 161.
    Fagotti A, Paris I, Grimolizzi F, et al. Secondary cytoreduction plus oxaliplatin-based HIPEC in platinum-sensitive recurrent ovarian cancer patients: a pilot study. Gynecol Oncol. 2009;113:335–40.PubMedCrossRefGoogle Scholar
  162. 162.
    Ceelen WP, Van Nieuwenhove Y, Van Belle S, et al. Cytoreduction and hyperthermic intraperitoneal chemoperfusion in women with heavily pretreated recurrent ovarian cancer. Ann Surg Oncol. 2009;19(7):2352–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Frenel JS, Leux C, Pouplin L, Ferron G, Berton Rigaud D, Bourbouloux E, Dravet F, Jaffre I, Classe JM. Oxaliplatin-based hyperthermic intraperitoneal chemotherapy in primary or recurrent epithelial ovarian cancer: a pilot study of 31 patients. J Surg Oncol. 2011;103(1):10–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Piccart MJ, Lacave AJ, Reed N, et al. Oxaliplatin or paclitaxel in patients with platinum-pretreated advanced ovarian cancer: a randomized phase II study of the European Organization for Research and Treatment of cancer gynecology group. J Clin Oncol. 2000;18:1193–202.PubMedCrossRefGoogle Scholar
  165. 165.
    Los G, Sminia P, Wondergem J, Mutsaers PHA, Havemen J, Huinink DT, Smals O, Gonzalezgonzalez D, Mcvie JG. Optimization of intraperitoneal cisplatin therapy with regional hyperthermia in rats. Eur J Cancer. 1991;27(4):472–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Los G, van Vugt MJ, Pinedo HM. Response of peritoneal solid tumors after intraperitoneal chemohyperthermia treatment with cisplatin or carboplatin. Br J Cancer. 1994;69(2):235–41.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Jandial DD, Messer K, Farshchi-Heydari S, Pu M, Howell SB. Tumor platinum concentration following intraperitoneal administration of cisplatin versus carboplatin in an ovarian cancer model. Gynecol Oncol. 2009;115(3):362–6.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Xu MJ, Alberts DS. Potentiation of platinum analogue cytotoxicity by hyperthermia. Cancer Chemother Pharmacol. 1988;21:191–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Lentz SS, Miller BE, Kucera GL, Levine EA. Intraperitoneal hyperthermic chemotherapy using carboplatin: a phase I analysis in ovarian carcinoma. Gynecol Oncol. 2007;106(1):207–10. [21].PubMedCrossRefGoogle Scholar
  170. 170.
    Steller MA, Egorin MJ, Trimble EL, Bartlett DL, Zuhowski EG, Alexander HR, et al. A pilot phase I trial of continuous hyperthermic peritoneal perfusion with high-dose carboplatin as primary treatment of patients with small-volume residual ovarian cancer. Cancer Chemother Pharmacol. 1999;43(2):106–14.PubMedCrossRefGoogle Scholar
  171. 171.
    Argenta PA, Sueblinvong T, Geller MA, Jonson AL, Downs LS Jr, Carson LF, Ivy JJ, Judson PL. Hyperthermic intraperitoneal chemotherapy with carboplatin for optimally-cytoreduced, recurrent, platinum-sensitive ovarian carcinoma: a pilot study. Gynecol Oncol. 2013;129(1):81–5.  https://doi.org/10.1016/j.ygyno.2013.01.010.PubMedCrossRefGoogle Scholar
  172. 172.
    Coccolini F, Campanati L, Catena F, et al. Hyperthermic intraperitoneal chemotherapy with cisplatin and paclitaxel in advanced ovarian cancer: a multicenter prospective observational study. J Gynecol Oncol. 2015;26(1):54–61.  https://doi.org/10.3802/jgo.2015.26.1.54.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ansaloni L, Coccolini F, Morosi L, et al. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br J Cancer. 2015;112(2):306–12.  https://doi.org/10.1038/bjc.2014.602.PubMedCrossRefGoogle Scholar
  174. 174.
    de Bree E, Rosing H, Filis D, Romanos J, Melisssourgaki M, Daskalakis M, Pilatou M, Sanidas E, Taflampas P, Kalbakis K, Beijnen JH, Tsiftsis DD. Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: a clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15:1183–92.PubMedCrossRefGoogle Scholar
  175. 175.
    Cashin PH, Ehrsson H, Wallin I, Nygren P, Mahteme H. Pharmacokinetics of cisplatin during hyperthermic intraperitoneal treatment of peritoneal carcinomatosis. Eur J Clin Pharmacol. 2013;69:533–40.PubMedCrossRefGoogle Scholar
  176. 176.
    Muller M, Chérel M, Dupré PF, Gouard S, Collet M, Classe JM. The cytotoxic effect of combined hyperthermia and taxane chemotherapy on ovarian cancer cells: results of an in vitro study. Eur Surg Res. 2012;48(2):55–63.  https://doi.org/10.1159/000333393. Epub 2011 Dec 23.PubMedCrossRefGoogle Scholar
  177. 177.
    Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. Pharmacokinetic study of perioperative intravenous Ifosfamide. Int J Surg Oncol. 2011;2011:185092.  https://doi.org/10.1155/2011/185092. Epub 2011 Sep 21.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Deraco M, Baratti D, Cabras AD, et al. Experience with peritoneal mesothelioma at the Milan National Cancer Institute. World J Gastrointest Oncol. 2010;2(2):76–84.  https://doi.org/10.4251/wjgo.v2.i2.76.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Bhatt A, Glehen O. The role of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer: a review. Indian J Surg Oncol. 2016;7(2):188–97.  https://doi.org/10.1007/s13193-016-0501-9.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Piso P, Dahlke MH, Loss M, Schlitt HJ. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in peritoneal carcinomatosis from ovarian cancer. World J Surg Oncol. 2004;2:21.  https://doi.org/10.1186/1477-7819-2-21.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Yoshida Y, Sasaki H, Kurokawa T, et al. Efficacy of intraperitoneal continuous hyperthermic chemotherapy as consolidation therapy in patients with advanced epithelial ovarian cancer: a long-term follow-up. Oncol Rep. 2005;13(1):121–5.PubMedGoogle Scholar
  182. 182.
    Rufián S, Muñoz-Casares FC, Briceño J, et al. Radical surgery peritonectomy and intraoperative intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis in recurrent or primary ovarian cancer. J Surg Oncol. 2006;94:316–24.  https://doi.org/10.1002/jso.20597.PubMedCrossRefGoogle Scholar
  183. 183.
    Pavlov MJ, Kovacevic PA, Ceranic MS, Stamenkovic AB, Ivanovic AM, Kecmanovic DM. Cytoreductive surgery and modified heated intraoperative intraperitoneal chemotherapy (HIPEC) for advanced and recurrent ovarian cancer - 12-year single center experience. Eur J Surg Oncol. 2009;35(11):1186–91.  https://doi.org/10.1016/j.ejso.2009.03.004.PubMedCrossRefGoogle Scholar
  184. 184.
    Pomel C, Ferron G, Lorimier G, et al. Hyperthermic intra-peritoneal chemotherapy using oxaliplatin as consolidation therapy for advanced epithelial ovarian carcinoma. Results of a phase II prospective multicentre trial. CHIPOVAC study. Eur J Surg Oncol. 2010;36(6):589–93.  https://doi.org/10.1016/j.ejso.2010.04.005.PubMedCrossRefGoogle Scholar
  185. 185.
    Roviello F, Pinto E, Corso G, et al. Safety and potential benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in peritoneal carcinomatosis from primary or recurrent ovarian cancer. J Surg Oncol. 2010;102(6):663–70.  https://doi.org/10.1002/jso.21682.PubMedCrossRefGoogle Scholar
  186. 186.
    Parson EN, Lentz S, Russell G, et al. Outcomes after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal surface dissemination from ovarian neoplasms. Am J Surg. 2011;202(4):481–6.  https://doi.org/10.1016/j.amjsurg.2011.02.004.PubMedCrossRefGoogle Scholar
  187. 187.
    Gonzalez Bayon L, Steiner MA, Vasquez Jimenez W, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of advanced epithelial ovarian carcinoma: upfront therapy, at first recurrence, or later? Eur J Surg Oncol. 2013;39:1109–15.  https://doi.org/10.1016/j.ejso.2013.06.022.PubMedCrossRefGoogle Scholar
  188. 188.
    Helm CW, Richard SD, Pan J, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer: first report of the HYPER-O registry. Int J Gynecol Cancer. 2010;20(1):61–9.  https://doi.org/10.1111/IGC.0b013e3181c50cde.PubMedCrossRefGoogle Scholar
  189. 189.
    Deraco M, Kusamura S, Virzì S, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol. 2011;122(2):215–20.  https://doi.org/10.1016/j.ygyno.2011.05.004.PubMedCrossRefGoogle Scholar
  190. 190.
    Bakrin N, Bereder JM, Decullier E, et al. Peritoneal carcinomatosis treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for advanced ovarian carcinoma: a French multicentre retrospective cohort study of566 patients. Eur J Surg Oncol. 2013;39:1435–43.  https://doi.org/10.1016/j.ejso.2013.09.030.PubMedCrossRefGoogle Scholar
  191. 191.
    Sun J-H, Ji Z-H, Yu Y, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy to treat advanced/recurrent epithelial ovarian cancer: results from a retrospective study on prospectively established database. Transl Oncol. 2016;9(2):130–8.  https://doi.org/10.1016/j.tranon.2016.02.002.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Di Giorgio A, De Iaco P, De Simone M, et al. Cytoreduction (Peritonectomy procedures) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in advanced ovarian cancer: retrospective Italian multicenter observational study of 511 cases. Ann Surg Oncol. 2017;24(4):914–22.  https://doi.org/10.1245/s10434-016-5686-1.PubMedCrossRefGoogle Scholar
  193. 193.
    Kumar L, Hariprasad R, Kumar S, et al. Upfront surgery vs neoadjuvant, chemotherapy in advanced epithelial ovarian carcinoma (EOC): a randomized, study. IGCS 13. Prague (A824), 2010.Google Scholar
  194. 194.
    Chi DS, Musa F, Dao F, et al. An analysis of patients with bulky advanced stage ovarian, tubal, and peritoneal carcinoma treated with primary debulking surgery (PDS) during an identical time period as the randomized EORTC-NCIC trial of PDS vs neoadjuvant chemotherapy (NACT). Gynecol Oncol. 2011;124(1):10–4.  https://doi.org/10.1016/j.ygyno.2011.08.014.PubMedCrossRefGoogle Scholar
  195. 195.
    Sehouli J, Savvatis K, Braicu EI, Schmidt SC, Lichtenegger W, Fotopoulou C. Primary versus interval debulking surgery in advanced ovarian cancer: results from a systematic single-center analysis. Int J Gynecol Cancer. 2010;20(8):1331–40.PubMedGoogle Scholar
  196. 196.
    Morice P, Brehier-Ollive D, Rey A, et al. Results of interval debulking surgery in advanced stage ovarian cancer: an exposed-nonexposed study. Ann Oncol. 2003;14(1):74–7.  https://doi.org/10.1093/annonc/mdg003.PubMedCrossRefGoogle Scholar
  197. 197.
    Onda T, Kobayashi H, Nakanishi T, et al. Feasibility study of neoadjuvant chemotherapy followed by interval debulking surgery for stage III/IV ovarian, tubal, and peritoneal cancers: Japan clinical oncology group study JCOG0206. Gynecol Oncol. 2009;113(1):57–62.  https://doi.org/10.1016/j.ygyno.2008.12.027.PubMedCrossRefGoogle Scholar
  198. 198.
    Lee SJ, Kim BG, Lee JW, Park CS, Lee JH, Bae DS. Preliminary results of neoadjuvant chemotherapy with paclitaxel and cisplatin in patients with advanced epithelial ovarian cancer who are inadequate for optimum primary surgery. J Obstet Gynaecol Res. 2006;32(1):99–10.  https://doi.org/10.1111/j.1447-0756.2006.00359.x.PubMedCrossRefGoogle Scholar
  199. 199.
    Van Driel W, Sikorska K, van Leeuwen J, et al. A phase 3 trial of hyperthermic intraperitoneal chemotherapy (HIPEC) for ovarian cancer. J Clin Oncol. 2017; 35. (suppl; abstr 5519).Google Scholar
  200. 200.
    Ozols RF. Paclitaxel (taxol)/carboplatin combination chemotherapy in the treatment of advanced ovarian cancer. Semin Oncol. 2000;27(suppl 7):3–7. 8.PubMedGoogle Scholar
  201. 201.
    Harries M, Gore M. Part I: chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet Oncol. 2002;3:529–36.PubMedCrossRefGoogle Scholar
  202. 202.
    du Bois A, Lück HJ, Meier W, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst. 2003;95:1309–29.Google Scholar
  203. 203.
    Paik ES, Lee YY, Shim M, Choi HJ, Kim TJ, Choi CH, Lee JW, Kim BG, Bae DS. Timing and patterns of recurrence in epithelial ovarian cancer patients with no gross residual disease after primary debulking surgery. Aust N Z J Obstet Gynaecol. 2016;56(6):639–47.  https://doi.org/10.1111/ajo.12529. Epub 2016 Sep 9.PubMedCrossRefGoogle Scholar
  204. 204.
    Gadducci A, Cosio S. Surveillance of patients after initial treatment of ovarian cancer. Crit Rev Oncol Hematol. 2009;71:43–52.PubMedCrossRefGoogle Scholar
  205. 205.
    Vaidya AP, Curtin JP. The follow-up of ovarian cancer. Semin Oncol. 2003;30:401.PubMedCrossRefGoogle Scholar
  206. 206.
    Bowtell DD, Böhm S, Ahmed AA, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15(11):668–79.  https://doi.org/10.1038/nrc4019.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Riester M, Wei W, Waldron L, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst. 2014;106(5):dju048.  https://doi.org/10.1093/jnci/dju048.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Fotopoulou C, Sehouli J, Aletti G, et al. Value of neoadjuvant chemotherapy for newly diagnosed advanced ovarian cancer: a European perspective. J Clin Oncol. 2017;35(6):587–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of SurgerySion Hospital (Lokmanya Tilak General Hospital)MumbaiIndia
  2. 2.Department of Surgical OncologyManipal HospitalBangaloreIndia
  3. 3.Department of Surgical OncologyFortis HospitalBangaloreIndia

Personalised recommendations