Skip to main content

Neural Networks for Robot Arm Cooperation with a Hierarchical Control Topology

  • Chapter
  • First Online:
Neural Networks for Cooperative Control of Multiple Robot Arms

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 927 Accesses

Abstract

This chapter studies the decentralized robot arm cooperation with a hierarchical control topology. We present in this chapter a novel strategy capable of solving the problem even though there exists some robot arms unable to access the command signal directly. The cooperative task execution problem can be formulated as a constrained quadratic programming problem. By replacing the command signal with estimations with neighbor information, the control law becomes to work in the partial command coverage situation. We then prove in theory that the system indeed also globally stabilizes to the optimal solution of the constrained quadratic optimization problem. Simulations demonstrate the effectiveness of the method presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo D, Zhang Y (2012) A new inequality-based obstacle-avoidance MVN scheme and its application to redundant robot manipulators. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1326–1340

    Google Scholar 

  2. Zhang Y, Guo D, Ma S (2013) Different-level simultaneous minimization of joint-velocity and joint-torque for redundant robot manipulators. J Intell Robot Syst 72(3–4):301–323

    Article  Google Scholar 

  3. Guo D, Zhang Y (2014) Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans Ind Electron 61(12):6903–6914

    Article  Google Scholar 

  4. Alami R, Fleury S, Herrb M, Ingrand F, Robert F (1998) Multi-robot cooperation in the MARTHA project. IEEE Robot Autom Mag 5(1):36–47

    Article  Google Scholar 

  5. Peng J (2004) Optimal control of multiple robot systems with friction using mathematical programs with complementarity constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 5224–5231

    Google Scholar 

  6. Moosavian SAA, Papadopoulos E (1997) On the control of space free-flyers using multiple impedance control. In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, pp 853–858

    Google Scholar 

  7. Liu Y, Xu Y, Bergerman M (1999) Cooperation control of multiple manipulators with passive joints. IEEE Trans Robot Autom 15:258–267

    Article  Google Scholar 

  8. Li S, Cui H, Li Y, Liu B, Lou Y (2013) Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput Appl 23(3):1051–1060

    Article  Google Scholar 

  9. Zhang Y, Guo D, Cai B, Chen K (2011) Remedy scheme and theoretical analysis of joint-angle drift phenomenon for redundant robot manipulators. Robot Comput Integr Manuf 27(4):860–869

    Article  Google Scholar 

  10. Li S, Liu B, Chen B, Lou Y (2012) Neural network based mobile phone localization using bluetooth connectivity. Neural Comput Appl 23(3):667–675

    Google Scholar 

  11. Xia Y, Feng G, Wang J (2004) A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw 17(7):1003–1015

    Article  MATH  Google Scholar 

  12. Hu X (2010) Dynamic system methods for solving mixed linear matrix inequalities and linear vector inequalities and equalities. Appl Math Comput 216(4):1181–1193

    MATH  MathSciNet  Google Scholar 

  13. Li S, Lou Y, Liu B (2012) Bluetooth aided mobile phone localization: a nonlinear neural circuit approach. ACM Trans Embed Comput Syst 13(4):78

    Google Scholar 

  14. Zhang Y, Shi Y, Chen K, Wang C (2009) Global exponential convergence and stability of gradient-based neural network for online matrix inversion. Appl Math Comput 215(3):1301–1306

    Article  MATH  MathSciNet  Google Scholar 

  15. Jin L, Zhang Y, Li S, Zhang Y (2016) Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans Ind Electron 63(11):6978–6988

    Article  Google Scholar 

  16. Jin L, Zhang Y (2014) G2-Type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans Cybern 45(2):153–164

    Google Scholar 

  17. Jin L, Zhang Y (2014) Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans Neural Netw Learn Syst 26(7):1525–1531

    MathSciNet  Google Scholar 

  18. Jin L, Li S (2017) Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. https://doi.org/10.1016/j.neucom.2017.05.017

  19. Jin L, Li S, La HM, Luo X (2017) Manipulability optimization of redundant manipulators using dynamic neural networks. 64(6):4710–4720

    Google Scholar 

  20. Li S, Zhou M, Luo X, You Z (2017) Distributed winner-take-all in dynamic networks. IEEE Trans Autom Control 62(2):577–589

    Article  MATH  MathSciNet  Google Scholar 

  21. Li S, Zhang Y, Jin L (2016) Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2574363

  22. Jin L, Zhang Y, Li S, Zhang Y (2017) Noise-tolerant ZNN models for solving time-varying zero-finding problems: A control-theoretic approach. IEEE Trans Autom Control 62(2):992–997

    Article  MATH  MathSciNet  Google Scholar 

  23. Jin L, Zhang Y, Li S (2016) Integration-enhanced Zhang neural network for real-time varying matrix inversion in the presence of various kinds of noises. IEEE Trans Neural Netw Learn Syst 27(12):2615–2627

    Article  Google Scholar 

  24. Mao M, Li J, Jin L, Li S, Zhang Y (2016) Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207:220–230

    Article  Google Scholar 

  25. Khan M, Lin S, Wang Q, Shao Z (2016) Distributed multi-robot formation and tracking control in cluttered environment. ACM Trans Auton Adapt Syst 11(2):12

    Article  Google Scholar 

  26. Wang H, Liu X, Liu P, Li S (2016) Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures. Inf Sci 336:60–74

    Article  Google Scholar 

  27. Khan M, Li S, Wang Q, Shao Z (2016) CPS oriented control design for networked surveillance robots with multiple physical constraints. IEEE Trans Comput Aided Des Integr Circuits Syst 35(5):778–791

    Article  Google Scholar 

  28. Khan M, Li S, Wang Q, Shao Z (2016) Formation control and tracking for co-operative robots with non-holonomic constraints. J Intell Robot Syst 82(1):163–174

    Article  Google Scholar 

  29. Wang H, Yang H, Liu X, Liu L, Li S (2016) Direct adaptive neural control of nonlinear strict-feedback systems with un-modeled dynamics using small-gain approach. Int J Adapt Control Signal Process 30(6):906–927

    Article  Google Scholar 

  30. Li S, You Z, Guo H, Luo X, Zhao Z (2015) Inverse-free extreme learning machine with optimal information updating. IEEE Trans Cybern 46(5):1229–1241

    Article  Google Scholar 

  31. Wang Z, Liu X, Liu K, Li S, Wang H (2016) Backstepping-based lyapunov function construction using approximate dynamic programming and sum of square techniques. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2016.2574747

  32. Muhammad A, Li S (2016) Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms. IEEE Trans Cybern 46(7):1538–1550

    Article  Google Scholar 

  33. Li S, Kong R, Guo Y (2014) Cooperative distributed source seeking by multiple robots: algorithms and experiments. IEEE/ASME Trans Mechatron 19(6):1810–1820

    Article  Google Scholar 

  34. Li S, Guo Y (2014) Distributed consensus filtering on directed switching graphs. Int J Robust Nonlinear Control 25:2019–2040

    Article  MATH  Google Scholar 

  35. Li S, Lou Y, Liu B (2014) Bluetooth aided mobile phone localization: a nonlinear neural circuit approach. ACM Trans Embed Comput Syst 13(4):78

    Article  Google Scholar 

  36. Li S, Li Y (2013) Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans Cybern 44(8):1397–1407

    Article  MathSciNet  Google Scholar 

  37. Li S, Liu B, Li Y (2013) Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24(2):301–309

    Article  Google Scholar 

  38. Li S, Li Y, Wang Z (2013) A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw 39:27–39

    Article  MATH  Google Scholar 

  39. Li S, Guo Y (2013) Dynamic consensus estimation of weighted average on directed graphs. Int J Syst Sci 46(10):1839–1853

    Article  MATH  MathSciNet  Google Scholar 

  40. Li S, Qin F (2013) A dynamic neural network approach for solving nonlinear inequalities defined on a graph and its application to distributed, routing-free, range-free localization of WSNs. Neurocomputing 117:72–80

    Article  Google Scholar 

  41. Li S, Guo Y, Fang J, Li H (2013) Average consensus with weighting matrix design for quantized communication on directed switching graphs. Int J Adapt Control Signal Process 27:519–540

    Article  MATH  MathSciNet  Google Scholar 

  42. Li S, Li Y, Liu B (2012) Model-free control of Lorenz chaos using an approximate optimal control strategy. Commun Nonlinear Sci Numer Simul 17:4891–4900

    Article  MATH  MathSciNet  Google Scholar 

  43. Li S, Wang Y, Yu J, Liu B (2013) A nonlinear model to generate the winner-take-all competition. Commun Nonlinear Sci Numer Simul 18:435–442

    Article  MATH  MathSciNet  Google Scholar 

  44. Li S, Wang Z, Li Y (2013) Using Laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process Lett 37:411–424

    Article  Google Scholar 

  45. Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205

    Article  Google Scholar 

  46. Li S, Yu J, Pan M, Chen S (2012) Winner-take-all based on discrete-time dynamic feedback. Appl Math Comput 219:1569–1575

    Article  MATH  MathSciNet  Google Scholar 

  47. Li Y, Li S (2013) A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments. Neurocomputing 104:170–179

    Article  Google Scholar 

  48. Chen S, Li S, Liu B, Lou Y, Liang Y (2012) Self-learning variable structure control for a class of sensor-actuator systems. Sensors 12:6117–6128

    Article  Google Scholar 

  49. Li S, Chen S, Liu B, Li Y, Liang Y (2012) Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91:1–10

    Article  Google Scholar 

  50. Mastroeni G (2005) Gap functions and descent methods for minty variational inequality. In: Optimization and control with applications. Springer

    Google Scholar 

  51. Fukushima M (1992) Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math Program 53:99–110

    Article  MATH  MathSciNet  Google Scholar 

  52. Khalil H (2002) Nonlinear systems. Prentice Hall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, S., Zhang, Y. (2018). Neural Networks for Robot Arm Cooperation with a Hierarchical Control Topology. In: Neural Networks for Cooperative Control of Multiple Robot Arms. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-7037-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7037-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7036-5

  • Online ISBN: 978-981-10-7037-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics