Skip to main content

Thermoregulatory Dysfunction

  • 986 Accesses

Abstract

Patients with spinal cord injuries may be susceptible to hypothermia or hyperthermia due to significant disturbances in the mechanisms of normal body temperature regulation, but hypothermia is more common (Khan et al. 2007). Patients with cervical cord lesions are in the greatest danger. Patients with spinal cord injuries below the cervical level are at a much lower risk. They have more active voluntary muscles and maintain normal sympathetic activity that subjects to sweating and vasomotor activity below the level of lesion. People with complete tetraplegia are particularly prone to hyperthermia, which is defined as rectal temperature above 101 °F (38.4 °C) due to impaired thermoregulation, and hypothermia defined as rectal temperature below 95 °F (35 °C). Since they often cannot control their body temperature in a narrow range, they often show poikilothermic, so that the body temperature can vary greatly depending on the ambient temperature.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-7033-4_23
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-7033-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

References

  • Attia M, Engel P. Thermoregulatory set point in patients with spinal cord injuries (spinal man). Paraplegia. 1983;21(4):233–48.

    CAS  PubMed  Google Scholar 

  • Biering-Sørensen F, Alexander MS, van Asbeck FWA, et al. Version 1.1 of the international spinal cord injury skin and thermoregulation function basic data set. Spinal Cord. 2017;55(6):566–9.

    PubMed  Google Scholar 

  • Colachis SC 3rd, Otis SM. Occurrence of fever associated with thermoregulatory dysfunction after acute traumatic spinal cord injury. Am J Phys Med Rehabil. 1995;74(2):114–9.

    CrossRef  Google Scholar 

  • Guttmann L, Silver J, Wyndham CH. Thermoregulation in spinal man. J Physiol. 1958;142:406–19.

    CAS  CrossRef  Google Scholar 

  • Karlsson AK, Krassioukov A, Alexander MS, et al. International spinal cord injury skin and thermoregulation function basic data set. Spinal Cord. 2012;50:512–6.

    CAS  CrossRef  Google Scholar 

  • Khan S, Plummer M, Martinez-Arizala A, et al. Hypothermia in patients with chronic spinal cord injury. J Spinal Cord Med. 2007;30:27–30.

    CrossRef  Google Scholar 

  • Menard MR, Hahn G. Acute and chronic hypothermia in a man with spinal cord injury: environmental and pharmacologic causes. Arch Phys Med Rehabil. 1991;72:421–4.

    CAS  PubMed  Google Scholar 

  • Mitchell D, Laburn HP. Pathophysiology of temperature regulation. Physiologist. 1985;28(6):507–17.

    CAS  PubMed  Google Scholar 

  • Price MJ. Thermoregulation during exercise in individuals with spinal cord injuries. Sports Med. 2006;36:863–79.

    CrossRef  Google Scholar 

  • Schmidt KD, Chan CW. Thermoregulation and fever in normal persons and in those with spinal cord injuries. Mayo Clin Proc. 1992;67:469–75.

    CAS  CrossRef  Google Scholar 

Suggested Reading

  • American Spinal Injury Association. International standards for neurological classification of spinal cord injury. Revised 2011. Updated 2015 edn. Atlanta, GA: American Spinal Injury Association; 2015.

    Google Scholar 

  • Byrne TN, Benzel EC, Waxman SG. Diseases of the spine and spinal cord. Oxford: Oxford University Press; 2000.

    Google Scholar 

  • Campbell WW. DeJong’s the neurologic examination. 7th ed. New York: Wolters Kluwer Lippincott Williams & Wilkins; 1992.

    Google Scholar 

  • Crossman A, Neary D. Neuroanatomy: an illustrated colour test. 5th ed. Philadelphia, PA: Elsevier; 2015.

    Google Scholar 

  • Green D, Olson DA, editors. Medical management of long-term disability. 2nd ed. Boston, MA: Butterworth-Heinemann; 1996.

    Google Scholar 

  • Guttmann L. Spinal cord injuries. Comprehensive management and research. Oxford: Blackwell Scientific Publications; 1976.

    Google Scholar 

  • Hattingen E, Klein JC, Weidauer S, Vrionis F, Setzer M, editors. Diseases of the spinal cord. Heidelberg: Springer; 2015.

    Google Scholar 

  • Illis LS, editor. Spinal cord dysfunction: assessment. Oxford: Oxford University Press; 1988.

    Google Scholar 

  • Lee BY, Ostrander LE, editors. The spinal cord injured patient. 2nd ed. New York: Demos; 2002.

    Google Scholar 

  • Noback CR, Strominger NL, Demarest RJ, Ruggiero DA. The human nervous system: structure and function. 6th ed. Totowa, NJ: Humana Press; 2005.

    Google Scholar 

  • Preston RA. Acid-base, fluids and electrolytes: made ridiculously simple. 2nd ed. Miami, FL: MedMaster, Inc.; 2011.

    Google Scholar 

  • Robertson D, Bigaaioni I, Burnstock G, et al. Primer on the autonomic nervous system. 3rd ed. London: Elsevier; 2011.

    Google Scholar 

  • Verhaagen J, McDonald JW III. Spinal cord injury. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology, third series, vol. 109. London: Elsevier; 2012.

    Google Scholar 

  • Vinken PJ, Bruyn GW, editors. Injuries of the spine and spinal cord. Part I. Handbook of clinical neurology, vol. 25. Oxford: North-Holland Publishing Company; 1976.

    Google Scholar 

  • Vinken PJ, Bruyn GW, editors. Injuries of the spine and spinal cord. Part II. Handbook of clinical neurology, vol. 25. Oxford: North-Holland Publishing Company; 1976.

    Google Scholar 

  • Vogel LC, Zebracki K, Betz RR, Mulcahey MJ, editors. Spinal cord injury in the child and young adult. London: Mac Keith Press; 2014.

    Google Scholar 

  • Weaver LC, Polosa C, editors. Autonomic dysfunction after spinal cord injury, Progress in brain research, vol. 152. New York: Elsevier; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ko, HY. (2019). Thermoregulatory Dysfunction. In: Management and Rehabilitation of Spinal Cord Injuries. Springer, Singapore. https://doi.org/10.1007/978-981-10-7033-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7033-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7032-7

  • Online ISBN: 978-981-10-7033-4

  • eBook Packages: MedicineMedicine (R0)