Advertisement

Requirements Engineering for Data Warehousing

Chapter

Abstract

This chapter discusses the manner in which data warehouses are developed and the major issues in development of these systems. We start by providing a brief introduction to data warehousing concepts and the main problems of data warehouse projects. Thereafter, the systems development life cycle of data warehouse development, and the different ways in which development proceeds including the recently developed agile approaches are considered in this chapter. Finally, we focus on the requirements stage of the development life cycle and discuss the different techniques used for requirements engineering in detail.

References

  1. 1.
    Loshin, D. (2013). Business intelligence the savvy manager’s guide (2nd ed.). Elsevier.Google Scholar
  2. 2.
    Hughes, R. (2013). Agile data warehousing project management business intelligence systems using scrum. Morgan Kaufman.Google Scholar
  3. 3.
    Ericson, J. (2006, April). A simple plan, information management magazine. http://www.information-management.com/issues/20060401/1051182-1.html. Accessed September 2011.
  4. 4.
    Hayen, R., Rutashobya, C., & Vetter, D. (2007). An investigation of the factors affecting data warehousing success. Issues In Information Systems, VIII(2), 547–553.Google Scholar
  5. 5.
    Alshboul, R. (2012). Data warehouse explorative study. Applied Mathematical Sciences, 6(61), 3015–3024.Google Scholar
  6. 6.
    Inmon, B. (2005). Building the data warehouse (4th ed.). New York: Wiley.Google Scholar
  7. 7.
    Boehnlein, M., & Ulbrich vom Ende, A. (1999). Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems. In Proceedings of Workshop on Data Warehousing and OLAP (pp. 15–21). ACM.Google Scholar
  8. 8.
    Hüsemann, B., Lechtenbörger, J., & Vossen, G. (2000). Conceptual data warehouse design. In Proceedings of the International Workshop on Design and Management of Data Warehouses (DMDW’2000), Stockholm, Sweden, June 5–6.Google Scholar
  9. 9.
    Moody, L.D., & Kortink, M.A.R. (2000). From enterprise models to dimensional models: A methodology for data warehouses and data mart design. In Proceedings of the International Workshop on Design and Management of Data Warehouses, Stockholm, Sweden (pp. 5.1–5.12)Google Scholar
  10. 10.
    Golfarelli, M., Maio, D., & Rizzi, S. (1998). Conceptual design of data warehouses from E/R schemes. In Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 1998 (Vol. 7, pp. 334–343). IEEE.Google Scholar
  11. 11.
    Prakash, N., Prakash, D., & Sharma, Y. K. (2009). Towards better fitting data warehouse systems. In The practice of enterprise modeling (pp. 130–144). Springer, Berlin, Heidelberg.Google Scholar
  12. 12.
    Corr, L., & Stagnitto, J. (2012). Agile data warehouse design. UK: Decision One Press.Google Scholar
  13. 13.
    Ambler, S. www.agiledata.org.
  14. 14.
    CMP. Data mart consolidation and business intelligence standardization. www.businessobjects.com/pdf/investors/data_mart_consolidation.pdf.
  15. 15.
    Muneeswara, P. C. Data mart consolidation process, What, Why, When, and How, Hexaware Technologies white paper. www.hexaware.com.
  16. 16.
    Ballard, C., Gupta A., Krishnan V., Pessoa N., & Stephan O. Data mart consolidation: Getting control of your enterprise information. redbooks.ibm.com/redbooks/pdfs/sg246653.pdf.
  17. 17.
    Bansali, N. (2007). Strategic alignment in data warehouses two case studies (Ph.D. thesis). RMIT University.Google Scholar
  18. 18.
    Paim, F. R. S., & de Castro, J. F. B. (2003). DWARF: An approach for requirements definition and management of data warehouse systems. In 11th IEEE Proceedings of International Conference on Requirements Engineering, 2003 (pp. 75–84). IEEE.Google Scholar
  19. 19.
    Winter, R., & Strauch, B. (2003). A method for demand-driven information requirements analysis in data warehousing projects. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003 (p. 9). IEEE.Google Scholar
  20. 20.
    Antón, A. I. (1996, April). Goal-based requirements analysis. In Proceedings of the Second International Conference on Requirements Engineering (pp. 136–144). IEEE.Google Scholar
  21. 21.
    Lamsweerde, A. (2000). Requirements engineering in the year 00: A research perspective. In Proceedings of the 22nd International Conference on Software Engineering (pp. 5–19). ACM.Google Scholar
  22. 22.
    Sutcliffe, A. G., Maiden, N. A., Minocha, S., & Manuel, D. (1998). Supporting scenario-based requirements engineering. IEEE Transactions on Software Engineering, 24(12), 1072–1088.Google Scholar
  23. 23.
    Lamsweerde, A., & Willemet, L. (1998). Inferring declarative requirements specifications from operational scenarios. IEEE Transactions on Software Engineering, 24(12), 1089–1114.Google Scholar
  24. 24.
    CREWS Team. (1998). The CREWS glossary, CREWS Report 98-1. http://SUNSITE.informatik.rwth-aachen.de/CREWS/reports.htm.
  25. 25.
    Liu, L., & Yu, E. (2004). Designing information systems in social context: A goal and scenario modelling approach. Information systems, 29(2), 187–203.Google Scholar
  26. 26.
    Boehnlein, M., & Ulbrich vom Ende, A. (2000). Business process oriented development of data warehouse structures. In Proceedings of Data Warehousing 2000 (pp. 3–21). Physica Verlag HD.Google Scholar
  27. 27.
    Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., & Paraboschi, S. (2001). Designing data marts for data warehouses. ACM Transactions on Software Engineering and Methodology, 10(4), 452–483.Google Scholar
  28. 28.
    Prakash, N., & Gosain, A. (2003). Requirements driven data warehouse development. In CAiSE Short Paper Proceedings (pp. 13–17).Google Scholar
  29. 29.
    Prakash, N., & Gosain, A. (2008). An approach to engineering the requirements of data warehouses. Requirements Engineering Journal, Springer, 13(1), 49–72.Google Scholar
  30. 30.
    Mazón, J. N., Pardillo, J., & Trujillo, J. (2007). A model-driven goal-oriented requirement engineering approach for data warehouses. Advances in Conceptual Modeling–Foundations and Applications (pp. 255–264). Springer, Berlin, Heidelberg.Google Scholar
  31. 31.
    Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decision Support Systems, 45(1), 4–21.Google Scholar
  32. 32.
    Leal, C. A., Mazón, J. N., & Trujillo, J. (2013). A business-oriented approach to data warehouse development. Ingeniería e Investigación, 33(1), 59–65.Google Scholar
  33. 33.
    Giorgini, P., Rizzi, S., & Garzetti, M. (2005). Goal-oriented requirement analysis for data warehouse design. In Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP (pp. 47–56). ACM.Google Scholar
  34. 34.
    Bruckner, R., List, B., & Scheifer, J. (2001). Developing requirements for data warehouse systems with use cases. In AMCIS 2001 Proceedings, 66.Google Scholar
  35. 35.
    Prakash, N., & Bhardwaj, H. (2014). Functionality for business indicators in data warehouse requirements engineering. Advances in conceptual modeling (pp. 39–48). Springer International Publishing.Google Scholar
  36. 36.
    Bhardwaj, H., & Prakash, N. (2016). Eliciting and structuring business indicators in data warehouse requirements engineering. Expert Systems, 33(4), 405–413.Google Scholar
  37. 37.
    Nasiri, A., Wrembel, R., & Zimányi, E. (2015). Model-based requirements engineering for data warehouses: From multidimensional modelling to KPI monitoring. In International Conference on Conceptual Modeling (pp. 198–209). Springer.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.ICLC Ltd.New DelhiIndia
  2. 2.Central University of RajasthanKishangarhIndia

Personalised recommendations