Advertisement

Scheduling in Coupled Electric and Gas Distribution Networks

  • Jing Qiu
  • Zhao Yang Dong
  • Ke Meng
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

This chapter presents a transactive approach to the optimal scheduling for prosumers in coupled electric and natural gas distribution networks, to help the integration of various distributed energy resources (DERs). DERs are co-ordinately operated in the form of a virtual power plant (VPP), which actively participates in the day-ahead and real-time electricity markets, as well as the wholesale gas market. In the day-ahead (DA) electricity and wholesale gas markets, a VPP aims to maximize expected profits by determining the unit commitments and hourly scheduling of DERs. In the real-time (RT) balancing market, a VPP adjusts DER schedules to minimize imbalance costs. This chapter addresses the energy conversions between electric power and gas loads and investigates the interacting operations of electric and gas distribution networks. The simulation results show that hierarchical, coordinated power and gas scheduling can identify more accurate operation plans for coupled transactive energy networks.

Keywords

Optimal scheduling Distributed energy resources Transactive energy Prosumer 

References

  1. 1.
    Z. Ding, W.J. Lee, J. Wang, Stochastic resource planning strategy to improve the efficiency of microgrid operation. IEEE Trans. Ind. Appl. 51(3), 1978–1986 (2015)CrossRefGoogle Scholar
  2. 2.
    S.M. Moghaddas-Tafreshi, E. Mashhour, Distributed generation modeling for power flow studies and a three-phase unbalanced power flow solution for radial distribution systems considering distributed generation. Electr. Power Syst. Res. 79(4), 680–686 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Giuntoli, D. Poli, Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages. IEEE Trans. Smart Grid 4(2), 942–955 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Su, J. Wang, J. Roh, Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid 5(4), 1876–1883 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Asmus, Microgrids, virtual power plants and our distributed energy future. Electr. J. 23(10), 72–82 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Pandzic, J.M. Morales, A.J. Conejo, I. Kuzle, Offering model for a virtual power plant based on stochastic programming. Appl. Energy 105, 282–292 (2013)CrossRefGoogle Scholar
  7. 7.
    M.A. Tajeddini, A. Rahimi-Kian, A. Soroudi, Risk averse optimal operation of a virtual power plant using two-stage stochastic programming. Energy 73, 958–967 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Peik-Herfeh, H. Seifi, M.K. Sheikh-EI-Eslami, Decision making of a virtual power plant under uncertainties for bidding in a day-ahead market using point estimate method. Electr. Power Syst. Res. 44(1), 88–98 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Rahimiyan, L. Baringo, Strategic bidding for a virtual power plant in the day-ahead and real-time markets: a price-taker robust optimization approach. IEEE Trans. Power Syst. 31(4), 2676–2687 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Nezamabadi, M.S. Nazar, Arbitrage strategy of virtual power plants in energy, spinning reserve and reactive power markets. IET Gen. Tran. Dis. 10(3), 750–763 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Mashhour, S.M. Moghaddas-Tafreshi, Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part I: problem formulation. IEEE Trans. Power Syst. 26(2), 949–956 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Zhao, Y. Shi, X. Dong, W. Luan, J. Bornemann, Short-term operation scheduling in renewable-powered microgrids: a duality-based approach. IEEE Trans. Sustain. Energy 5(1), 209–217 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Kusakana, Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. IET Renew. Power Gen. 9(8), 916–924 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, H. Qu, Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market. IEEE Trans. Ind. Inform. 12(2), 587–596 (2016)CrossRefGoogle Scholar
  15. 15.
    P. Karimyan, M. Abedi, S.H. Hosseinian, R. Khatami, Stochastic approach to represent distributed energy resources in the form of a virtual power plant in energy and reserve markets. IET Gen. Tran. Dis. 10(8), 1792–1804 (2016)CrossRefGoogle Scholar
  16. 16.
    W. Liu, Q. Wu, F. Wen, J. Ostergaard, Day-ahead congestion management in distribution systems through household demand response and distribution congestion prices. IEEE Trans. Smart Grid 5(6), 2739–2747 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Karami, M.J. Sanjari, S.H. Hosseinian, G.B. Gharehpetian, An optimal dispatch algorithm for managing residential distributed energy resources. IEEE Trans. Smart Grid 5(5), 2360–2367 (2014)CrossRefGoogle Scholar
  18. 18.
    A.K. Basu, A. Bhattacharya, S. Chowdhury, S.P. Chowdhury, Planned scheduling for economic power sharing in a CHP-based micro-grid. IEEE Trans. Power Syst. 27(1), 30–38 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Alipour, B. Mohammadi-Ivatloo, K. Zare, Stochastic scheduling of renewable and CHP-based microgrids. IEEE Trans. Ind. Inform. 11(5), 1049–1058 (2015)CrossRefGoogle Scholar
  20. 20.
    D.T. Nguyen, L.B. Le, Risk-constrained profit maximization for microgrid aggregators with demand response. IEEE Trans. Smart Grid 6(1), 135–146 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Wu, X. Wang, C. Qu, A hierarchical framework for generation scheduling of microgrids. IEEE Trans. Power Deliv. 29(6), 2448–2457 (2014)CrossRefGoogle Scholar
  22. 22.
    D.T. Nguyen, L.B. Le, Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics. IEEE Trans. Smart Grid 5(4), 1608–1620 (2014)CrossRefGoogle Scholar
  23. 23.
    S.R. Dabbagh, M.K. Sheihk-EI-Eslami, Risk assessment of virtual power plants offering in energy and reserve markets. IEEE Trans. Power Syst. 31(5), 3572–3582 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Geramifar, M. Shahabi, T. Barforoshi, Coordination of energy storage systems and DR resources for optimal scheduling of microgrids under uncertainties. IET Renew. Power Gener. 11(2), 378–388 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Soares, M.A.F. Ghazvini, N. Borges, Z. Vale, A stochastic model for energy resources management considering demand response in smart grids. Electr. Power Syst. Res. 143, 599–610 (2017)CrossRefGoogle Scholar
  26. 26.
    E.G. Kardakos, C.K. Simoglou, A.G. Bakirtzis, Optimal offering strategy of a virtual power plant: a stochastic bi-level approach. IEEE Trans. Smart Grid 7(2), 794–806 (2016)Google Scholar
  27. 27.
    S.R. Dabbagh, M.K. Sheihk-EI-Eslami, Risk-based profit allocation to DERs integrated with a virtual power plant using cooperative Game theory. Electr. Power Syst. Res. 121, 368–378 (2015)CrossRefGoogle Scholar
  28. 28.
    Australian Energy Market Operator (AEMO) [Online], Available: http://www.aemo.com.au/
  29. 29.
    A.J. Conejo, J. Contreras, R. Espinola, M.A. Plazas, Forecasting electricity prices for a day-ahead pool-based electric energy market. Int. J. Forecast. 21(3), 435–462 (2005)CrossRefGoogle Scholar
  30. 30.
    A.J. Conejo, M. Carrion, J.M. Morales, Decision Making Under Uncertainty in Electricity Markets (Springer, New York, NY, USA, 2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    M. Shahidehpour, Y. Fu, T. Wiedman, Impact of natural gas infrastructure on electric power systems. Proc. IEEE 93(5), 1042–1056 (2005)CrossRefGoogle Scholar
  32. 32.
    L. Wu, M. Shahidehpour, Optimal coordination of stochastic hydro and natural gas supplies in midterm operation of power systems. IET Gen. Trans. Dist. 5(5), 577–587 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Kabirian, M.R. Hemmati, A strategic planning model for natural gas transmission networks. Energy Policy 35(11), 5656–5670 (2007)CrossRefGoogle Scholar
  34. 34.
    M. Chaudry, N. Jenkins, G. Strbac, Multi-time period combined gas and electricity network optimisation. Elec. Power Syst. Res. 78(7), 1265–1279 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Qiu, Z.Y. Dong, J.H. Zhao, K. Meng, Y. Zheng, D.J. Hill, Low carbon oriented expansion planning of integrated gas and power systems. IEEE Trans. Power Syst. 30(2), 1035–1046 (2015)CrossRefGoogle Scholar
  36. 36.
    S. An, Q. Li, T.W. Gedra, Natural gas and electricity optimal power flow, in Proceedings IEEE PES Transmission and Distribution Conference and Exposition (Dallas, TX, 2003), pp. 138–143Google Scholar
  37. 37.
    F.J. Luo, Z.Y. Dong, K. Meng, J. Qiu, J.J. Yang, K.P. Wong, Short-term operational planning framework for virtual power plants with high renewable penetrations. IET Renew. Power Gen. 10(5), 623–633 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Zheng, Z.Y. Dong, F.J. Luo, K. Meng, J. Qiu, K.P. Wong, Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations. IEEE Trans. Power Syst. 29(1), 212–220 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Huang, Y. Xue, Z.Y. Dong, K.P. Wong, An efficient probabilistic assessment method for electricity market risk management. IEEE Trans. Power Syst. PP(99), 1–1 (2012)Google Scholar
  40. 40.
    K. Leong, R. Siddiqi, Value at risk for power markets, in Energy Risk Management, Ed. (New York: McGraw-Hill, 1998), pp. 157–178Google Scholar
  41. 41.
    J. Qiu, H. Yang, Z.Y. Dong, J.H. Zhao, K. Meng, F. Luo, K.P. Wong, A linear programming approach to expansion co-planning in gas and electricity markets. IEEE Trans. Power Syst. 31(5), 3594–3606 (2016)CrossRefGoogle Scholar
  42. 42.
    J.H. Zhao, F.S. Wen, Z.Y. Dong, Y.S. Yue, K.P. Wong, Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization. IEEE Trans. Ind. Inform. 8(4), 889–899 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Li, M. Shahidehpour, Z. Li, Risk-constrained bidding strategy with stochastic unit commitment. IEEE Trans. Power Syst. 22(1), 449–458 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Energy FlagshipCommonwealth Scientific and Industrial Research Organization (CSIRO)SydneyAustralia
  2. 2.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia
  3. 3.School of Electrical and Information EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations