Advertisement

Molecular Mechanism for Chromatin Regulation During MCM Loading in Mammalian Cells

  • Nozomi SugimotoEmail author
  • Masatoshi FujitaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

DNA replication is a fundamental process required for the accurate and timely duplication of chromosomes. During late mitosis to G1 phase, the MCM2-7 complex is loaded onto chromatin in a manner dependent on ORC, CDC6, and Cdt1, and chromatin becomes licensed for replication. Although every eukaryotic organism shares common features in replication control, there are also some differences among species. For example, in higher eukaryotic cells including human cells, no strict sequence specificity has been observed for replication origins, unlike budding yeast or bacterial replication origins. Therefore, elements other than beyond DNA sequences are important for regulating replication. For example, the stability and precise positioning of nucleosomes affects replication control. However, little is known about how nucleosome structure is regulated when replication licensing occurs. During the last decade, histone acetylation enzyme HBO1, chromatin remodeler SNF2H, and histone chaperone GRWD1 have been identified as chromatin-handling factors involved in the promotion of replication licensing. In this review, we discuss how the rearrangement of nucleosome formation by these factors affects replication licensing.

Keywords

Replication Pre-RC Cdt1 MCM HBO1 SNF2H GRWD1 Histone Nucleosome 

Notes

Acknowledgment

We thank all members of our research group for the helpful discussion and critical reading of the manuscript. This work was supported in part by Grants to Sugimoto and Fujita from the Ministry of Education, Culture, Sports, Science and Technology of Japan (17080013, 21370084, 25291027, 26114713, 09J07233).

Conflicts of Interests

The authors declare no conflicts of interest in relation to this article.

References

  1. Aalfs JD, Kingston RE (2000) What does ‘chromatin remodeling’ mean? Trends Biochem Sci 25:548–555PubMedCrossRefGoogle Scholar
  2. Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, Yoshimura A, Tada S, Nakayama T, Murofushi H, Okumura K, Takeda S, Horikoshi M, Seki M, Enomoto T (2011) The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 286:30504–30512PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aggarwal BD, Calvi BR (2004) Chromatin regulates origin activity in Drosophila follicle cells. Nature 430:372–376PubMedCrossRefGoogle Scholar
  4. Aizawa M, Sugimoto N, Watanabe S, Yoshida K, Fujita M (2016) Nucleosome assembly and disassembly activity of GRWD1, a novel Cdt1-binding protein that promotes pre-replication complex formation. Biochim Biophys Acta 1863:2739–2748Google Scholar
  5. Alenghat T, Yu J, Lazar MA (2006) The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor. EMBO J 25:3966–3974PubMedPubMedCentralCrossRefGoogle Scholar
  6. Annunziato AT, Hansen JC (2000) Role of histone acetylation in the assembly and modulation of chromatin structures. Gene Expr 9:37–61PubMedCrossRefGoogle Scholar
  7. Araki H (2011) Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation. Genes Genet Syst 86:141–149PubMedCrossRefGoogle Scholar
  8. Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8:84–90PubMedCrossRefGoogle Scholar
  9. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21:497–518PubMedCrossRefGoogle Scholar
  10. Au TJ, Rodriguez J, Vincent JA, Tsukiyama T (2011) ATP-dependent chromatin remodeling factors tune S phase checkpoint activity. Mol Cell Biol 31:4454–4463PubMedPubMedCentralCrossRefGoogle Scholar
  11. Avvakumov N, Cote J (2007) The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26:5395–5407PubMedCrossRefGoogle Scholar
  12. Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Li Yeo A, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, Hughes TR (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887Google Scholar
  13. Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR (2002) Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420:833–837PubMedCrossRefGoogle Scholar
  14. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134PubMedCrossRefGoogle Scholar
  15. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844PubMedCrossRefGoogle Scholar
  16. Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating cellular DNA replication. Science 355:eaah6317PubMedCrossRefGoogle Scholar
  17. Bosco G, Du W, Orr-Weaver TL (2001) DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol 3:289–295PubMedCrossRefGoogle Scholar
  18. Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16:967–978PubMedCrossRefGoogle Scholar
  19. Cadoret JC, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, Quesneville H, Prioleau MN (2008) Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A 105:15837–15842PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, Laurent-Chabalier S, Desprat R, Mechali M (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. GenomeRes 21:1438–1449Google Scholar
  21. Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Mechali M (2012) New insights into replication origin characteristics in metazoans. Cell Cycle 11:658–667PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheng L, Kelly TJ (1989) Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59:541–551PubMedCrossRefGoogle Scholar
  23. Cheng LZ, Workman JL, Kingston RE, Kelly TJ (1992) Regulation of DNA replication in vitro by the transcriptional activation domain of GAL4-VP16. Proc Natl Acad SciUSA 89:589–593CrossRefGoogle Scholar
  24. Chuang RY, Kelly TJ (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A 96:2656–2661PubMedPubMedCentralCrossRefGoogle Scholar
  25. Coleman KE, Grant GD, Haggerty RA, Brantley K, Shibata E, Workman BD, Dutta A, Varma D, Purvis JE, Cook JG (2015) Sequential replication-coupled destruction at G1/S ensures genome stability. GenesDev 29:1734–1746CrossRefGoogle Scholar
  26. Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta 1677:113–119PubMedCrossRefGoogle Scholar
  27. Cortez D, Glick G, Elledge SJ (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101:10078–10083PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dai J, Chuang RY, Kelly TJ (2005) DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 102:337–342PubMedCrossRefGoogle Scholar
  29. Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Mechali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730PubMedCrossRefGoogle Scholar
  30. Das SP, Borrman T, Liu VW, Yang SC, Bechhoefer J, Rhind N (2015) Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 25:1886–1892PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007PubMedCrossRefGoogle Scholar
  32. Dellino GI, Cittaro D, Piccioni R, Luzi L, Banfi S, Segalla S, Cesaroni M, Mendoza-Maldonado R, Giacca M, Pelicci PG (2013) Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 23:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dirscherl SS, Krebs JE (2004) Functional diversity of ISWI complexes. Biochem Cell Biol 82:482–489PubMedCrossRefGoogle Scholar
  34. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451PubMedCrossRefGoogle Scholar
  35. Du YC, Stillman B (2002) Yph1p, an ORC-interacting protein: potential links between cell proliferation control, DNA replication, and ribosome biogenesis. Cell 109:835–848PubMedCrossRefGoogle Scholar
  36. Eberharter A, Becker PB (2004) ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci 117:3707–3711PubMedCrossRefGoogle Scholar
  37. Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC (2002) MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277:33049–33057PubMedCrossRefGoogle Scholar
  38. Feng Y, Vlassis A, Roques C, Lalonde ME, Gonzalez-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, Paquet E, Yang XJ, Gingras AC, Cote J, Groth A (2016) BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 35:176–192PubMedCrossRefGoogle Scholar
  39. Flanagan JF, Peterson CL (1999) A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 27:2022–2028PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fujita M (2006) Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 1:22PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366PubMedCrossRefGoogle Scholar
  42. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. GenesDev 21:3331–3341CrossRefGoogle Scholar
  43. Georgiakaki M, Chabbert-Buffet N, Dasen B, Meduri G, Wenk S, Rajhi L, Amazit L, Chauchereau A, Burger CW, Blok LJ, Milgrom E, Lombes M, Guiochon-Mantel A, Loosfelt H (2006) Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription. Mol Endocrinol 20:2122–2140PubMedCrossRefGoogle Scholar
  44. Gratenstein K, Heggestad AD, Fortun J, Notterpek L, Pestov DG, Fletcher BS (2005) The WD-repeat protein GRWD1: potential roles in myeloid differentiation and ribosome biogenesis. Genomics 85:762–773PubMedCrossRefGoogle Scholar
  45. Grienenberger A, Miotto B, Sagnier T, Cavalli G, Schramke V, Geli V, Mariol MC, Berenger H, Graba Y, Pradel J (2002) The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr Biol 12:762–766PubMedCrossRefGoogle Scholar
  46. Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G (2007) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931PubMedCrossRefGoogle Scholar
  47. Gutierrez JL, Chandy M, Carrozza MJ, Workman JL (2007) Activation domains drive nucleosome eviction by SWI/SNF. EMBO J 26:730–740PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hakimi MA, Bochar DA, Schmiesing JA, Dong Y, Barak OG, Speicher DW, Yokomori K, Shiekhattar R (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998PubMedCrossRefGoogle Scholar
  49. Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A (2017) Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 18:141–158PubMedPubMedCentralCrossRefGoogle Scholar
  50. Han J, Li Q, McCullough L, Kettelkamp C, Formosa T, Zhang Z (2010) Ubiquitylation of FACT by the cullin-E3 ligase Rtt101 connects FACT to DNA replication. Genes Dev 24:1485–1490PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hartl T, Boswell C, Orr-Weaver TL, Bosco G (2007) Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation. Chromosoma 116:197–214PubMedCrossRefGoogle Scholar
  52. Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137:445–458PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, Takahashi T, Nakagawa T, Shirahige K, Masukata H (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J 26:1327–1339PubMedPubMedCentralCrossRefGoogle Scholar
  54. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146:80–91PubMedPubMedCentralCrossRefGoogle Scholar
  55. Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding – wrapping up transcription. Science 297:1824–1827PubMedCrossRefGoogle Scholar
  56. Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, Nakatsuka A, Kunichika T, Obuse C, Waga S (2013) Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 288:30161–30171PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hu YF, Hao ZL, Li R (1999) Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. GenesDev 13:637–642CrossRefGoogle Scholar
  58. Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, Chen S, Groth A, Patel DJ (2015) A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 22:618–626PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad SciA 105:8956–8961CrossRefGoogle Scholar
  60. Iizuka M, Stillman B (1999) Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274:23027–23034PubMedCrossRefGoogle Scholar
  61. Iizuka M, Takahashi Y, Mizzen CA, Cook RG, Fujita M, Allis CD, Frierson HF Jr, Fukusato T, Smith MM (2009) Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene 436:108–114PubMedPubMedCentralCrossRefGoogle Scholar
  62. Iouk TL, Aitchison JD, Maguire S, Wozniak RW (2001) Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Mol Cell Biol 21:1260–1271PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ishii T, Shiomi Y, Takami T, Murakami Y, Ohnishi N, Nishitani H (2010) Proliferating cell nuclear antigen-dependent rapid recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged sites after UV irradiation in HeLa cells. J Biol Chem 285:41993–42000PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ishimi Y, Komamura-Kohno Y, Arai K, Masai H (2001) Biochemical activities associated with mouse Mcm2 protein. J Biol Chem 276:42744–42752PubMedCrossRefGoogle Scholar
  65. Jasencakova Z, Scharf AN, Ask K, Corpet A, Imhof A, Almouzni G, Groth A (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37:736–743PubMedCrossRefGoogle Scholar
  66. Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721PubMedCrossRefGoogle Scholar
  67. Jin Q, Mao X, Li B, Guan S, Yao F, Jin F (2015) Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour Biol 36:1895–1902PubMedCrossRefGoogle Scholar
  68. Kawasaki Y, Kim HD, Kojima A, Seki T, Sugino A (2006) Reconstitution of Saccharomyces cerevisiae prereplicative complex assembly in vitro. Genes Cells 11:745–756PubMedCrossRefGoogle Scholar
  69. Killian A, Le Meur N, Sesboue R, Bourguignon J, Bougeard G, Gautherot J, Bastard C, Frebourg T, Flaman JM (2004) Inactivation of the RRB1-Pescadillo pathway involved in ribosome biogenesis induces chromosomal instability. Oncogene 23:8597–8602PubMedCrossRefGoogle Scholar
  70. Kueh AJ, Dixon MP, Voss AK, Thomas T (2011) HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 31:845–860PubMedCrossRefGoogle Scholar
  71. Kurat CF, Yeeles JT, Patel H, Early A, Diffley JF (2017) Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell 65:117–130PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lafon A, Chang CS, Scott EM, Jacobson SJ, Pillus L (2007) MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 26:5373–5384PubMedCrossRefGoogle Scholar
  73. Li R, Botchan MR (1994) Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc Natl Acad Sci U S A 91:7051–7055PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li X, Zhao Q, Liao R, Sun P, Wu X (2003) The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278:30854–30858PubMedCrossRefGoogle Scholar
  75. Lipford JR, Bell SP (2001) Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell 7:21–30PubMedCrossRefGoogle Scholar
  76. Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279:17283–17288PubMedCrossRefGoogle Scholar
  77. Liu G, Chen X, Gao Y, Lewis T, Barthelemy J, Leffak M (2012) Altered replication in human cells promotes DMPK (CTG) (n) · (CAG)(n) repeat instability. Mol Cell Biol 32:1618–1632PubMedPubMedCentralCrossRefGoogle Scholar
  78. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5:a010207PubMedPubMedCentralCrossRefGoogle Scholar
  79. MacCallum DE, Losada A, Kobayashi R, Hirano T (2002) ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol Biol Cell 13:25–39PubMedPubMedCentralCrossRefGoogle Scholar
  80. Martin MM, Ryan M, Kim R, Zakas AL, Fu H, Lin CM, Reinhold WC, Davis SR, Bilke S, Liu H, Doroshow JH, Reimers MA, Valenzuela MS, Pommier Y, Meltzer PS, Aladjem MI (2011) Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 21:1822–1832PubMedPubMedCentralCrossRefGoogle Scholar
  81. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053PubMedCrossRefGoogle Scholar
  82. Miotto B, Struhl K (2006) Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 26:5969–5982PubMedPubMedCentralCrossRefGoogle Scholar
  83. Miotto B, Struhl K (2008) HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. GenesDev 22:2633–2638CrossRefGoogle Scholar
  84. Miotto B, Struhl K (2010) HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  85. Miotto B, Sagnier T, Berenger H, Bohmann D, Pradel J, Graba Y (2006) Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev 20:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  86. Miotto B, Ji Z, Struhl K (2016) Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A 113:E4810–E4819PubMedPubMedCentralCrossRefGoogle Scholar
  87. Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, Schiltz RL, Hager GL (2014) Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 21:73–81PubMedCrossRefGoogle Scholar
  88. Nishitani H, Taraviras S, Lygerou Z, Nishimoto T (2001) The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 276:44905–44911PubMedCrossRefGoogle Scholar
  89. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25:1126–1136PubMedPubMedCentralCrossRefGoogle Scholar
  90. Orr SJ, Gaymes T, Ladon D, Chronis C, Czepulkowski B, Wang R, Mufti GJ, Marcotte EM, Thomas NS (2010) Reducing MCM levels in human primary T cells during the G(0)-->G(1) transition causes genomic instability during the first cell cycle. Oncogene 29:3803–3814PubMedPubMedCentralCrossRefGoogle Scholar
  91. Petryk N, Kahli M, d’Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O (2016) Replication landscape of the human genome. NatCommun 7:10208Google Scholar
  92. Pruitt SC, Bailey KJ, Freeland A (2007) Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 25:3121–3132PubMedCrossRefGoogle Scholar
  93. Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21:29–39PubMedCrossRefGoogle Scholar
  94. Rao H, Marahrens Y, Stillman B (1994) Functional conservation of multiple elements in yeast chromosomal replicators. Mol Cell Biol 14:7643–7651PubMedPubMedCentralCrossRefGoogle Scholar
  95. Reid JL, Iyer VR, Brown PO, Struhl K (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6:1297–1307PubMedCrossRefGoogle Scholar
  96. Richet N, Liu D, Legrand P, Velours C, Corpet A, Gaubert A, Bakail M, Moal-Raisin G, Guerois R, Compper C, Besle A, Guichard B, Almouzni G, Ochsenbein F (2015) Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 43:1905–1917PubMedPubMedCentralCrossRefGoogle Scholar
  97. Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 381:816–825PubMedCrossRefGoogle Scholar
  98. Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 23:191–201PubMedCrossRefGoogle Scholar
  99. Schaper S, Fromont-Racine M, Linder P, de la Cruz J, Namane A, Yaniv M (2001) A yeast homolog of chromatin assembly factor 1 is involved in early ribosome assembly. Curr Biol 11:1885–1890PubMedCrossRefGoogle Scholar
  100. Segurado M, de Luis A, Antequera F (2003) Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 4:1048–1053PubMedPubMedCentralCrossRefGoogle Scholar
  101. Seki T, Diffley JF (2000) Stepwise assembly of initiation proteins at budding yeast replication origins in vitro. Proc Natl Acad Sci U S A 97:14115–14120PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sequeira-Mendes J, Diaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gomez M (2009) Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 5:e1000446PubMedPubMedCentralCrossRefGoogle Scholar
  103. Shen Z, Sathyan KM, Geng Y, Zheng R, Chakraborty A, Freeman B, Wang F, Prasanth KV, Prasanth SG (2010) A WD-repeat protein stabilizes ORC binding to chromatin. Mol Cell 40:99–111PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39:93–98PubMedCrossRefGoogle Scholar
  105. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847PubMedCrossRefGoogle Scholar
  106. Springer C, Krappmann S, Kunzler M, Zmasek C, Braus GH (1997) Regulation of the yeast HIS7 gene by the global transcription factor Abf1p. Mol Gen Genet 256:136–146PubMedCrossRefGoogle Scholar
  107. Stedman W, Deng Z, Lu F, Lieberman PM (2004) ORC, MCM, and histone hyperacetylation at the Kaposi’s sarcoma-associated herpesvirus latent replication origin. J Virol 78:12566–12575PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43PubMedCrossRefGoogle Scholar
  109. Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Fujita M (2004) Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem 279:19691–19697PubMedCrossRefGoogle Scholar
  110. Sugimoto N, Kitabayashi I, Osano S, Tatsumi Y, Yugawa T, Narisawa-Saito M, Matsukage A, Kiyono T, Fujita M (2008) Identification of novel human Cdt1-binding proteins by a proteomics approach: proteolytic regulation by APC/CCdh1. Mol Biol Cell 19:1007–1021PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sugimoto N, Yoshida K, Tatsumi Y, Yugawa T, Narisawa-Saito M, Waga S, Kiyono T, Fujita M (2009) Redundant and differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. J Cell Sci 122:1184–1191PubMedCrossRefGoogle Scholar
  112. Sugimoto N, Yugawa T, Iizuka M, Kiyono T, Fujita M (2011) Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J Biol Chem 286:39200–39210PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sugimoto N, Maehara K, Yoshida K, Yasukouchi S, Osano S, Watanabe S, Aizawa M, Yugawa T, Kiyono T, Kurumizaka H, Ohkawa Y, Fujita M (2015) Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture. Nucleic Acids Res 43:5898–5911PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3:107–113PubMedPubMedCentralCrossRefGoogle Scholar
  115. Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280:23416–23423PubMedCrossRefGoogle Scholar
  116. Tan BC, Chien CT, Hirose S, Lee SC (2006) Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 25:3975–3985PubMedPubMedCentralCrossRefGoogle Scholar
  117. Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4:198–207PubMedCrossRefGoogle Scholar
  118. Tsao CC, Geisen C, Abraham RT (2004) Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling. EMBO J 23:4660–4669PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tse C, Fletcher TM, Hansen JC (1998) Enhanced transcription factor access to arrays of histone H3/H4 tetramer. DNA complexes in vitro: implications for replication and transcription. Proc Natl Acad Sci U S A 95:12169–12173PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tsukiyama T (2002) The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol CellBiol 3:422–429CrossRefGoogle Scholar
  121. Valenzuela MS, Chen Y, Davis S, Yang F, Walker RL, Bilke S, Lueders J, Martin MM, Aladjem MI, Massion PP, Meltzer PS (2011) Preferential localization of human origins of DNA replication at the 5′-ends of expressed genes and at evolutionarily conserved DNA sequences. PLoS One 6:e17308PubMedPubMedCentralCrossRefGoogle Scholar
  122. Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintome C, Riou JF, Prioleau MN (2014) G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBOJ 33:732–746CrossRefGoogle Scholar
  123. VanDemark AP, Blanksma M, Ferris E, Heroux A, Hill CP, Formosa T (2006) The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22:363–374PubMedCrossRefGoogle Scholar
  124. Varga-Weisz P (2001) ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20:3076–3085PubMedCrossRefGoogle Scholar
  125. Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17:1894–1908PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, Wagle N, Hwang DS, Dutta A (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11:997–1008PubMedCrossRefGoogle Scholar
  127. Venditti P, Costanzo G, Negri R, Camilloni G (1994) ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain. Biochim Biophys Acta 1219:677–689PubMedCrossRefGoogle Scholar
  128. Vincent JA, Kwong TJ, Tsukiyama T (2008) ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15:477–484PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796PubMedCrossRefGoogle Scholar
  130. Wittmeyer J, Formosa T (1997) The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol 17:4178–4190PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312PubMedCrossRefGoogle Scholar
  132. Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M (2010) Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 9:4351–4363PubMedPubMedCentralCrossRefGoogle Scholar
  133. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173:673–683PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, Bell SP, Aparicio OM (2001) Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294:2357–2360PubMedCrossRefGoogle Scholar
  135. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–435PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yompakdee C, Huberman JA (2004) Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J Biol Chem 279:42337–42344PubMedCrossRefGoogle Scholar
  137. Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O, Chabes A, Pantesco V, Dubois E, Parrinello H, Skrzypczak M, Ginalski K, Lengronne A, Pasero P (2014) The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. MolCell 54:691–697Google Scholar
  138. You Z, Masai H (2008) Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J Biol Chem 283:24469–24477PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM (2005) Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 24:1406–1417PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Cellular Biochemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations