Skip to main content

Refined One-Dimensional Models for the Multi-Field Analysis of Layered Smart Structures

  • Chapter
  • First Online:
Analysis and Modelling of Advanced Structures and Smart Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 81))

Abstract

The analysis of layered structures requires the use of numerical tools that able to describe the complex behavior that can appear at the interface between two different materials. The use of the Finite Element Method can only lead to accurate results if the kinematic assumptions of the structural models allow complex deformation fields to be evaluated, and as a consequence classical models are often ineffective in the analysis of such structures. The use of the Carrera Unified Formulation provides a general tool that can be used to derive refined one-dimensional models in a compact form. The use of a refined kinematic description over the cross-section of an element leads to accurate results even when multi-field problems are considered, that is when complex stress fields appear. A comprehensive derivation of a class of refined one-dimensional models, which are able to deal with multilayer structures and multi-field problems, is presented in this section. Thermal and piezoelectric effects are considered, and a fully coupled thermo-piezo-elastic model is presented. Finally, some benchmarks are shown in order to verify the accuracy of the presented models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad SN, Upadhyay CS, Venkatesan C (2006) Electro-thermo-elastic formulation for the analysis of smart structures. Smart Materials and Structures 15(2):401

    Google Scholar 

  • Ambrosini R (2000) A modified Vlasov theory for dynamic analysis of thin-walled and variable open section beams. Engineering Structures 22(8):890–900

    Google Scholar 

  • Bailey T, Hubbard J (1985) Distributed piezoelectric polymer active vibration control of a cantilever beam. AIAA Journal 8:605–611

    Google Scholar 

  • Benjeddou A, Trindade M, Ohayon R (1997) A unified beam finite element model for extension and shear piezoelectric actuation mechanisms. Journal of Intelligent Material Systems and Structures 8(12):1012–1025

    Google Scholar 

  • Berdichevsky VL (1976) Equations of the theory of anisotropic inhomogeneous rods. Dokl Akad Nauk 228:558–561

    Google Scholar 

  • Biscani F, Nali P, Belouettar S, Carrera E (2012) Coupling of hierarchical piezoelectric plate finite elements via arlequin method. Journal of intelligent materials systems and structures 23:749

    Google Scholar 

  • Carrera E (1997a) \( C_{z}^{0} \) Requirements – Models for the two dimensional analysis of multilayered structures. Composite Structure 37:373–384

    Google Scholar 

  • Carrera E (1997b) An improved reissner-mindlin-type model for the electromechanical analysis of multilayered plates including piezo-layers. Journal of Intelligent Material Systems and Structures 8:232–248

    Google Scholar 

  • Carrera E (2000) An assessment of mixed and classical theories for thermal stress analysis of orthotropic multilayered plates. Journal of Thermal Stresses 23:797–831

    Google Scholar 

  • Carrera E (2003) Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering 10:215–297

    Google Scholar 

  • Carrera E, Boscolo M (2007) Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures: Formulation and numerical assessment. Archives of Computational Methods in Engineering 14(4):383–430

    Google Scholar 

  • Carrera E, PetroloM(2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47:537–556

    Google Scholar 

  • Carrera E, Robaldo A (2007) Extension of reissner mixed variational principle to thermopiezelasticity. Atti della Accademia delle Scienze di Torino Classe di Scienze Fisiche Matematiche e Naturali 31:27–42

    Google Scholar 

  • Carrera E, Boscolo M, Robaldo A (2007) Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures: Formulation and numerical assessment. Archives of Computational Methods in Engineering 14(4):383–430

    Google Scholar 

  • Carrera E, Brischetto S, Nali P (2008) Variational statements and computational models for multifield problems and multilayered structures. Mechanics of Advanced Materials and Structures 15(3-4):182–198

    Google Scholar 

  • Carrera E, Giunta G, Nali P, Petrolo M (2010) Refined beam elements with arbitrary crpss-section geometries. Computers and Structures 88:283–293

    Google Scholar 

  • Carrera E, Gaetano G, M P (2011a) Beam Structures, Classical and Advanced Theories. John Wiley & Sons

    Google Scholar 

  • Carrera E, Petrolo M, Nali P (2011b) Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock and Vibrations 18(3):485–502

    Google Scholar 

  • Carrera E, Petrolo M, Varello A (2012a) Advanced beam formulations for free vibrations analysis of conventional and joined wings. Journal of Aerospace Engineering 25(2):282–293

    Google Scholar 

  • Carrera E, Zappino E, Petrolo M (2012b) Advanced elements for the static analysis of beams with compact and bridge-like sections. Journal of structural engineering 56:49–61

    Google Scholar 

  • Carrera E, Cinefra M, Petrolo M, Zappino E (2014a) Comparisons between 1d (beam) and 2d (plate/shell) finite elements to analyze thin walled structures. Aerotecnica Misssili & Spazio The journal of Aerospace Science, Technology and Systems 93(1-2)

    Google Scholar 

  • Carrera E, Cinefra M, Petrolo M, Zappino E (2014b) Finite Element Analysis of Structures Through Unified Formulation. John Wiley & Sons

    Google Scholar 

  • Carrera E, Filippi M, Zappino E (2014c) Free vibration analysis of laminated beam by polynomial, trigonometric, exponential and zig-zag theories. Journal of Composite Materials 48(19):2299–2316

    Google Scholar 

  • Caruso G, Galeani S, Menini L (2003) Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators. Simulation modelling prectice and theory 11:403–419

    Google Scholar 

  • Cowper GR (1966) The shear coefficient in Timoshenko’s Beam Theory. Journal of Applied Mechanics 33(2):335–340

    Google Scholar 

  • Crawley E, Luis J (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal 25:1373–1385

    Google Scholar 

  • Davies JM, Leach P (1994) First-order generalised beam theory. Journal of Constructional Steel Research 31(2-3):187–220

    Google Scholar 

  • Davies JM, Leach P, Heinz D (1994) Second-order generalised beam theory. Journal of Constructional Steel Research 31(2-3):221–241

    Google Scholar 

  • Dong SB, Alpdogan C, Taciroglu E (2010) Much ado about shear correction factors in Timoshenko beam theory. International Journal of Solids and Structures 47(13):1651–1665, https://doi.org/10.1016/j.ijsolstr.2010.02.018

  • Dong XJ, Meng G, Peng JC (2006) Vibration control of piezoelectric actuators smart structures based on system identification technique. Journal of sound and vibration 297:680–693

    Google Scholar 

  • Euler L (1744) De curvis elasticis. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis iso-perimetrici lattissimo sensu accepti. Bousquet & Socios, Lausanne & Geneva

    Google Scholar 

  • Friberg PO (1985) Beam element matrices derived from Vlasov’s theory of open thin-walled elastic beams. International Journal for Numerical Methods in Engineering 21:1205–1228

    Google Scholar 

  • Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli GC, Mussi F (1983) Anisotropic beam theory and applications. Computers & Structures 16(1):403–413

    Google Scholar 

  • Kim J, Varadan VV, Varadan VK (1997) Finite element modelling of structures including piezoelectric active devices. International journal for numerical methods in engineering 832:817–832

    Google Scholar 

  • Kim TW, Kim JH (2005) Optimal distribution of an active layer for transient vibration control of an flexible plates. Smart Material and Structures 14:904–916

    Google Scholar 

  • Kpeky F, Abed-Meraim F, Boudaoud H, Daya EM (2017) Linear and quadratic solid–shell finite elements shb8pse and shb20e for the modeling of piezoelectric sandwich structures. Mechanics of Advanced Materials and Structures pp 1–20

    Google Scholar 

  • Kumar K, Narayanan S (2007) The optimal location of piezolectric actuators and sensors for vibration controls of plate. Smart Material and Structures 16:2680–2691

    Google Scholar 

  • Kusculuoglu ZK, Royston TJ (2005) Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications. Smart Material and Structures 14:1139–1153

    Google Scholar 

  • Liu G, Dai K, Lim K (2004) Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using radial point interpolation method. Smart Material and Structures 14:1438–1447

    Google Scholar 

  • Miglioretti F, Carrera E, Petrolo M (2014) Variable kinematic beam elements for electro-mechanical analysis. Smart Structures and Systems 13(4):517–546

    Google Scholar 

  • Moita J, Soares C, Soares C (2005) Active control of forced vibration in adaptive structures using a higher order model. Composite Structures 71:349–355

    Google Scholar 

  • Moitha J, Correira I, Soares C, Soares C (2004) Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators. Computer and Structures 82:1349–1358

    Google Scholar 

  • Robaldo A, Carrera E, Benjeddou A (2005) Unified formulation for finite element thermoleastic analysis of multilayered anisotropic composite plates. Journal of Thermal Stresses 28:1031–1064

    Google Scholar 

  • Robaldo A, Carrera E, Benjeddou A (2006) A unified formulation for finite element analysis of piezoelectric adaptive plates. Computers & Structures 84(22):1494–1505

    Google Scholar 

  • de Saint-Venant A (1856) Mémoire sur la Torsion des Prismes, avec des considérations sur leur flexion, ainsi que sur l’équilibre interieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s’exerçant simultanément. Académie des Sciences de l’Institut Impérial de Frances 14:233–560

    Google Scholar 

  • Sarvanos D, Heyliger P (1999) Mechanics and computational models for laminated piezoelectric beams, plate, and shells. Applied Mechanic Review 52(10):305–320

    Google Scholar 

  • Schardt R (1966) Eine Erweiterung der Technischen Biegetheorie zur Berech- nung Prismatischer Faltwerke. Der Stahlbau 35:161–171

    Google Scholar 

  • Silvestre N, N S, Camotim D (2002) First-Order Generalised Beam Theory for Arbitrary Orthotropic Materials. Thin-Walled Structures 40(9):791–820

    Google Scholar 

  • Sun C, Zhang X (1995) Use of thickness-shear mode in adaptive sandwich structures. Smart Materials and Structures 4(3):202

    Google Scholar 

  • Timoshenko SP (1921) On the corrections for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine 41:744–746

    Google Scholar 

  • Tzou HS, Ye R (1994) Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis. Journal of Vibration and Acoustics 116(4):489–495

    Google Scholar 

  • Vasques C, Rodrigues J (2006) Active vibration of smart piezoelectric beams: comparison of classical and optimal feedback control strategies. Computer and Structures 84:1459–1470

    Google Scholar 

  • Vidal P, D’Ottavio M, Thaier M, Polit O (2011) An efficient finite shell element for the static resposne of piezoelectric laminates. Journal of intelligent materials systems and structures 22:671

    Google Scholar 

  • Vlasov VZ (1984) Thin Walled Elastic Beams, 2nd edn. National Technical Information Service, Jerusalim

    Google Scholar 

  • Volovoi VV (1999) Asymptotic theory for static behavior of elastic anisotropic I-beams. International Journal of Solids and Structures 36(7):1017–1043, https://doi.org/10.1016/S0020-7683(97)00341-7

  • Washizu K (1968) Variational methods in elasticity and plasticity. Oxford: Pergamon Press

    Google Scholar 

  • Xu S, Koko T (2004) Finite element analysis and design of actively acontrolled piezoelectric smart structure. Finite element in Analysis and Design 40:241–262

    Google Scholar 

  • Yu W, Hodges DH (2004) Elasticity Solutions Versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams. Journal of Applied Mechanics 71(1):15

    Google Scholar 

  • Yu W, Volovoi VV, Hodges DH, Hong X (2002) Validation of the variational asymptotic beam sectional analysis (VABS). AIAA Journal 40:2105–2113

    Google Scholar 

  • Zappino E, Carrera E, Rowe S, Mangeot C, Marques H (2016) Numerical analyses of piezoceramic actuators for high temperature applications. Composite Structures 151:36 – 46

    Google Scholar 

  • Zhang X, Sun C (1996a) Formulation of an adaptive sandwich beam. Smart Materials and Structures 5(6):814

    Google Scholar 

  • Zhang XD, Sun CT (1996b) Formulation of an adaptive sandwich beam. Smart Materials and Structures 5(6):814

    Google Scholar 

  • Zhou X, Chattopadhyay A, Gu H (2000) Dynamic resposne of smart composites using a coupled thermo-piezoelectric-mechanical model. AIAA Journal 38:1939–1948

    Google Scholar 

  • Zhou YS, Tiersten HF (1994) An elastic analysis of laminated composite plates in cylindrical bending due to piezoelectric actuators. Smart Materials and Structures 3(3):255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Zappino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zappino, E., Carrera, E. (2018). Refined One-Dimensional Models for the Multi-Field Analysis of Layered Smart Structures. In: Altenbach, H., Carrera, E., Kulikov, G. (eds) Analysis and Modelling of Advanced Structures and Smart Systems. Advanced Structured Materials, vol 81. Springer, Singapore. https://doi.org/10.1007/978-981-10-6895-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6895-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6764-8

  • Online ISBN: 978-981-10-6895-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics