A software platform for the analysis of porous die-cast parts using the finite cell method

  • Mathias WürknerEmail author
  • Sascha Duczek
  • Harald Berger
  • Heinz Köppe
  • Ulrich Gabbert
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 81)


Due to the die-cast technology the manufactured parts contain unavoidable imperfections such as cavities and pores with a length scale much smaller than the size of the produced parts. Such imperfections can reduce the load bearing capacity as well as the lifetime of a part and, consequently, have to be taken into consideration during the design process. But, to include the huge amount of small scale pores in a classical finite element simulation requires an extremely refined mesh and results in a computational effort, which may exceed the capacity of todayt’‘s computer hardware. An alternative approach is the application of the finite cell method (FCM), which can operate with non body-fitted hexahedral or tetrahedral meshes, meaning that the finite element mesh does not have to be aligned to the geometry of the structural part. The pores are taken into account in form of a STL data set (STL: standard tessellation language) coming from computed tomography (CT) or other sources, such as from a cast simulation procedure.

The paper deals with the development of a software platform, which combines the FCM with the widely used commercial finite element package Abaqus. The overall workflow along with specific implementational details are discussed. Finally, academic benchmark problems are used to verify the developed software platform.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the support provided by the European Regional Development Fund (German: Europäischer Fonds für regionale Entwicklung–EFRE) and the Investitionsbank Saxony-Anhalt related to the project number ZS/2016/04/78125.


  1. Ambos E, Anders U, Schalk S, Bullick M, Reinhart C, Matzen HU, Besser W (2013a) Gussteilprüfung auf einem neuen Niveau: Neue Ergebnisse über den Einsatz schneller Computertomografen in Druckgiessereien. Giesserei Erfahrungsaustausch 11/12:8–15Google Scholar
  2. Ambos E, Besser W, Teuber S, Brunke O, Neuber D, Stuke I, Lux H (2013b) Einsatz der schnellen Computertomographie zur Porositätsbewertung an Druckgussteilen. Giesserei-Rundschau 60:14–22Google Scholar
  3. Attene M (2014) Direct repair of self-intersecting meshes. Graphical Models 76:658–668Google Scholar
  4. Bathe KJ (2002) Finite-Elemente-Methoden. Springer-VerlagGoogle Scholar
  5. Bechet E, Cuilliere JC, Trochu F (2002) Generation of a finite element MESH from stereolithography (STL) files. Computer-Aided Design 34:1–17Google Scholar
  6. Duczek S (2014) Higher Order Finite Elements and the Fictitious Domain Concept for Wave Propagation Analysis. VDI Fortschritt-Berichte Reihe 20 Nr. 458, URL
  7. Duczek S, Berger H, Ambos E, Gabbert U (2015) Eine neue Methode zur Berücksichtigung des Einflusses der Porosität in Al-Druckgussteilen auf die Festigkeit - Ein Beitrag zum Leichtbau. Gießerei-Rundschau 62:222–227Google Scholar
  8. Duczek S, Duvigneau F, Gabbert U (2016) The finite cell method for tetrahedral meshes. Finite Elements in Analysis and Design 121:18–32Google Scholar
  9. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Computational Methods in Applied Mechanics and Engineering 197:3768–3782Google Scholar
  10. Oberdorfer B, Habe D, Kaschnitz E (2014) Bestimmung der Porosität in Al-Gussstücken mittels CT und ihres Einflusses auf die Festigkeitseigenschaften. Giesserei-Rundschau 61:138–141Google Scholar
  11. Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p-extension for embedded domain problems in solid mechanics. Computational Methods in Applied Mechanics and Engineering 41:121–133Google Scholar
  12. Ramière I, Angot P, BelliardM(2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Computational Methods in Applied Mechanics and Engineering 196:766–781Google Scholar
  13. Rank E, Düster A, Schillinger D, Yang Z (2009) The finite cell method: High order simulation of complex structures without meshing. In: Yuan Y, Cui JZ, Mang H (eds) Computational Structural Engineering, Springer Science+Business Media B.V.Google Scholar
  14. Rehse C, Schmicker D, Maaß A, Bähr R (2013) Ein Bewertungskonzept für computertomographisch ermittelte Porositäten in Gussteilen hinsichtlich ihrer Auswirkung auf die lokale Beanspruchbarkeit des Bauteils. Giesserei-Rundschau 60:106–110Google Scholar
  15. Saul’ev VK (1963) On solution of some boundary value problems on high performance computers by fictitious domain method. Siberian Mathematical Journal 4:912–925Google Scholar
  16. Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Computers and Mathematics with Application 64:3527–3541Google Scholar
  17. Zienkiewicz OC, Taylor RL (2000) The Finite Element Method - Volume 2: Solid Mechanics. Butterworth-HeinemannGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mathias Würkner
    • 1
    Email author
  • Sascha Duczek
    • 1
  • Harald Berger
    • 1
  • Heinz Köppe
    • 1
  • Ulrich Gabbert
    • 1
  1. 1.Institute of MechanicsOtto von Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations