Advertisement

Formal Analysis and Verification for an Ultralightweight Authentication Protocol RAPP of RFID

  • Wei Li
  • Meihua Xiao
  • Yanan Li
  • Yingtian Mei
  • Xiaomei Zhong
  • Jimin Tu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 768)

Abstract

Radio Frequency Identification (RFID) technique, as the core of Internet of Things, is facing security threats. It is critical to protect information security in RFID system. Ultralightweigh authentication protocols are an important class of RFID lightweight authentication protocols. RAPP is a recently proposed ultralightweight authentication protocol, which is different from any other existing protocols due to the use of permutation. Formal methods are vital for ensuring the security and reliability of software systems, especially safety-critical systems. A protocol abstract modeling method is presented to build abstract interaction model of RAPP which can be formalized by extracting interaction features. Due to the complexity of fundamental cryptograph operations in RAPP, the proposed method overcomes the limitation which is inconvenient to discuss security of RAPP directly with formal method. Using SPIN, authenticity and consistency of RAPP properties is verified. Analysis and verification result shows that RAPP is vulnerable against desynchronization attack. The proposed modeling method above has great significance in formal analysis of similar ultralightweight authentication protocols of RFID.

Keywords

RFID authentication protocol RAPP Model checking Protocol abstract modeling Desynchronization attack 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) under grant of No. 61163005 and 61562026, the Natural Science Foundation of Jiangxi Province of China under grant of No. 20161BAB202063, and the Foreign Science Technology Cooperation Project of Jiangxi Province (No. 20151BDH80005).

References

  1. 1.
    Bruce, N., Kim, H., Kang, Y., Lee, Y., Lee, H.: On modeling protocol-based clustering tag in RFID systems with formal security analysis. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications (AINA), pp. 498–505 (2015). doi: 10.1109/AINA.2015.227
  2. 2.
    Qian, Q., Jia, Y.L., Zhang, R.: A lightweight RFID security protocol based on elliptic curve crytography. Int. J. Netw. Secur. 18(2), 354–361 (2016)Google Scholar
  3. 3.
    López, P.P., Castro, D.D.J.C.H., Garnacho, D.D.A.R.: Lightweight cryptography in radio frequency identification (RFID) systems. Computer Science Department, Carlos III University of Madrid (2008)Google Scholar
  4. 4.
    Chien, H.Y., Huang, C.W.: Security of ultra-lightweight RFID authentication protocols and its improvements. ACM SIGOPS Oper. Syst. Rev. 41(4), 83–86 (2007). doi: 10.1145/1278901.1278916 CrossRefGoogle Scholar
  5. 5.
    Peris-Lopez, P., Hernandez-Castro, J.C., Tapiador, J.M.E., Ribagorda, A.: Advances in ultralightweight cryptography for low-cost RFID tags: Gossamer protocol. In: Chung, K., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 56–68. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00306-6_5 CrossRefGoogle Scholar
  6. 6.
    Chien, H.Y.: SASI: a new ultralightweight RFID authentication protocol providing strong authentication and strong integrity. IEEE Trans. Dependable Secure Comput. 4(4), 337–340 (2007). doi: 10.1109/tdsc.2007.70226 CrossRefGoogle Scholar
  7. 7.
    Gurubani, J.B., Thakkar, H., Patel, D.R.: Improvements over extended LMAP+: RFID authentication protocol. In: Dimitrakos, T., Moona, R., Patel, D., McKnight, D.H. (eds.) IFIPTM 2012. IAICT, vol. 374, pp. 225–231. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29852-3_17 CrossRefGoogle Scholar
  8. 8.
    Tian, Y., Chen, G., Li, J.: A new ultralightweight RFID authentication protocol with permutation. IEEE Commun. Lett. 16(5), 702–705 (2012). doi: 10.1109/lcomm.2012.031212.120237 CrossRefGoogle Scholar
  9. 9.
    Xiao, M., Ma, C., Deng, C., Zhu, K.: A novel approach to automatic security protocol analysis based on authentication event logic. Chin. J. Electron. 24(1), 187–192 (2015). doi: 10.1049/cje.2015.01.031 CrossRefGoogle Scholar
  10. 10.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295 (1997)CrossRefGoogle Scholar
  11. 11.
    Maggi, P., Sisto, R.: Using SPIN to verify security properties of cryptographic protocols. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 187–204. Springer, Heidelberg (2002). doi: 10.1007/3-540-46017-9_14 CrossRefGoogle Scholar
  12. 12.
    Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–208 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Qingling, C., Yiju, Z., Yonghua, W.: A minimalist mutual authentication protocol for RFID system & BAN logic analysis. In: ISECS International Colloquium on Computing, Communication, Control, and Management, CCCM 2008, vol. 2, pp. 449–453. IEEE (2008). doi: 10.1109/CCCM.2008.305
  14. 14.
    Islam, S.: Security analysis of LMAP using AVISPA. Int. J. Secure. Netw. 9(1), 30–39 (2014). doi: 10.1504/ijsn.2014.059325 CrossRefGoogle Scholar
  15. 15.
    Yuan, G., Long, S.: Formal verification of RFID protocols using nuXmv. In: 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 58–62. IEEE (2016). doi: 10.1109/ICASID.2016.7873917
  16. 16.
    Bagheri, N., Safkhani, M., Peris-Lopez, P., Tapiador, J.E.: Cryptanalysis of RAPP, an RFID authentication protocol. IACR Cryptology ePrint Archive, p. 702 (2012)Google Scholar
  17. 17.
    Shao-hui, W., Zhijie, H., Sujuan, L., Dan-wei, C.: Security analysis of RAPP an RFID authentication protocol based on permutation. College of computer, Nanjing University of Posts and Telecommunications, Nanjing, 210046 (2012)Google Scholar
  18. 18.
    Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Desynchronization attack on RAPP ultralightweight authentication protocol. Inf. Process. Lett. 113(7), 205–209 (2013). doi: 10.1016/j.ipl.2013.01.003 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bruce, N., Kim, H., Kang, Y., Lee, Y., Lee, H.: On modeling protocol-based clustering tag in RFID systems with formal security analysis. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications (AINA), pp. 498–505. IEEE (2015). doi: 10.1109/aina.2015.227
  20. 20.
    Hou, G., Zhou, K., Yong, J.: Survey of state explosion problem in model checking. Comput. Sci. 40(06A), 77–86 (2013). doi: 10.3969/j.issn.1002-137X.2013.z1.018 Google Scholar
  21. 21.
    Xiao, M., Xue, J.: Formal description of properties of concurrency system by temporal logic. J. Naval Univ. Eng. 05, 10–13 (2004). doi: 10.3969/j.issn.1009-3486.2004.05.003 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of SoftwareEast China Jiaotong UniversityNanchangPeople’s Republic of China

Personalised recommendations