Advertisement

A Greedy Heuristic Based on Corner Occupying Action for the 2D Circular Bin Packing Problem

  • Kun He
  • Mohammed Dosh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 768)

Abstract

The paper proposes a new two-dimensional circular bin packing problem (2D-CBPP) that is closely related to the well-known 2D rectangular bin packing problem and the single container circle packing problem. Inspired by Gold corner, silver side and strawy void for Chinese Go game, a greedy algorithm based on corner occupying action (GACOA) is proposed for solving the 2D-CBPP. We define the corner occupying action to pack the outside circles into a bin as compactly as possible, such that the number of used bins is minimized. As there are no existing benchmarks for this proposed problem, we generate two sets of benchmark instances with equal and unequal circles respectively. Experimental results show that the proposed algorithm performs quite well on these 2D-CBPP instances.

Keywords

Circular bin packing Corner occupying Heuristic Greedy algorithm 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61472147, 61602196 and 61373016) and Shenzhen Science and Technology Planning Project (JCYJ20170307154749425).

References

  1. 1.
    Wscher, G., Hauner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3), 1109–30 (2007)CrossRefGoogle Scholar
  2. 2.
    Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wei, L., Oon, W.C., Zhu, W., Lim, A.: A skyline heuristic for the 2D rectangular packing and strip packing problems. Eur. J. Oper. Res. 215(2), 337–46 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Lodi, A., Martello, S., Vigo, D.: Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS J. Comput. 11(4), 345–357 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Faroe, O., Pisinger, D., Zachariasen, M.: Guided local search for the three-dimensional bin-packing problem. INFORMS J. Comput. 15(3), 267–283 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Parreo, F., Alvarez-Valds, R., Oliveira, J.F., Tamarit, J.M.: A hybrid GRASP/VND algorithm for two-and three-dimensional bin packing. Annal. Oper. Res. 179(1), 203–220 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing problems. INFORMS J. Comput. 18(1), 71–85 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    He, K., Huang, M., Yang, C.: An action-space-based global optimization algorithm for packing circles into a square container. Comput. Oper. Res. 30(58), 67–74 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lpez, C.O., Beasley, J.E.: Packing unequal circles using formulation space search. Comput. Oper. Res. 40(5), 1276–1288 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lpez, C.O., Beasley, J.E.: A formulation space search heuristic for packing unequal circles in a fixed size circular container. Eur. J. Oper. Res. 251(1), 64–73 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hifi, M., M’hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. 2009, 22 (2009)MATHGoogle Scholar
  13. 13.
    He, K., Mo, D., Ye, T., Huang, W.: A coarse-to-fine quasi-physical optimization method for solving the circle packing problem with equilibrium constraints. Comput. Indus. Eng. 66(4), 1049–60 (2013)CrossRefGoogle Scholar
  14. 14.
    Liu, J., Li, G., Chen, D., Liu, W., Wang, Y.: Two-dimensional equilibrium constraint layout using simulated annealing. Comput. Indus. Eng. 59(4), 530–6 (2010)CrossRefGoogle Scholar
  15. 15.
    Huang, W.Q., Li, Y., Jurkowiak, B., Li, C.M., Xu, R.C.: A two-level search strategy for packing unequal circles into a circle container. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 868–872. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45193-8_69 CrossRefGoogle Scholar
  16. 16.
    He, K., Huang, W.: An efficient placement heuristic for three-dimensional rectangular packing. Comput. Oper. Res. 38(1), 227–33 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    He, K., Huang, W., Jin, Y.: An efficient deterministic heuristic for two-dimensional rectangular packing. Comput. Oper. Res. 39(7), 1355–63 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Specht, E.: Packomania website 2017. www.packomania.com

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Faculty of Education for GirlsKufa UniversityNajafIraq
  3. 3.Shenzhen Research InstituteHuazhong University of Science and TechnologyShenzhenChina

Personalised recommendations