Advertisement

ETSW: An Encounter History Tree Based Routing Protocol in Opportunistic Networks

  • Haoyan Liang
  • Zhigang Chen
  • Jia Wu
  • Peiyuan Guan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 768)

Abstract

The traditional flooding based routing protocols for the opportunistic networks like Epidemic or SnW (Spray and Wait) are blindfold on nodes selecting during the data packets forwarding, and besides, traditional probability based routing protocol like PRoPHET has the disadvantages of low transmission success rate and high transmission delay. So in this paper, we propose Encounter Tree Spray and Wait (ETSW) routing protocol combining with the respective advantages of them for routing in opportunistic networks, which exploits the encounter history of mobile nodes to reduce the blindness of data transmission between nodes. And the simulation results show that ETSW can improve the delivery rate, and reduce the transmission delay of data packets forwarding comparing with the traditional Spray and Wait routing protocols.

Keywords

Opportunistic networks Routing protocol Spray and wait routing Nodes encounter tree 

References

  1. 1.
    Trifunovic, S., Kouyoumdjieva, S.T., Distl, B., et al.: A decade of research in opportunistic networks: challenges, relevance, and future directions. IEEE Commun. Mag. 55(1), 168–173 (2017)CrossRefGoogle Scholar
  2. 2.
    Martonosi, M.: MOBILE SENSING: Retrospectives and Trends. GetMobile Mob. Comput. Commun. 20(1), 14–19 (2016)CrossRefGoogle Scholar
  3. 3.
    Tang, L., Wu, W.: Data forwarding with selectively partial flooding in opportunistic networks. In: Zeng, Q.-A. (ed.) Wireless Communications, Networking and Applications. LNEE, vol. 348, pp. 1233–1241. Springer, New Delhi (2016). doi: 10.1007/978-81-322-2580-5_112 CrossRefGoogle Scholar
  4. 4.
    Wang, E., Yang, Y., Wu, J., et al.: Phone-to-phone communication utilizing WiFi hotspot in energy-constrained pocket switched networks. IEEE Trans. Veh. Technol. 65(10), 8578–8590 (2016)CrossRefGoogle Scholar
  5. 5.
    Eze, E.C., Zhang, S.J., Liu, E.J., et al.: Advances in vehicular ad-hoc networks (VANETs): challenges and road-map for future development. Int. J. Autom. Comput. 13(1), 1–18 (2016)CrossRefGoogle Scholar
  6. 6.
    Liu, D., Hou, M., Cao, Z., et al.: Duplicate detectable opportunistic forwarding in duty-cycled wireless sensor networks. IEEE/ACM Trans. Netw. (TON) 24(2), 662–673 (2016)CrossRefGoogle Scholar
  7. 7.
    He, D., Zeadally, S., Kumar, N., et al.: Anonymous authentication for wireless body area networks with provable security. IEEE Syst. J. 99, 1–12 (2016)Google Scholar
  8. 8.
    Hess, A., Hummel, K.A., Gansterer, W.N., et al.: Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Comput. Surv. (CSUR) 48(3), 38 (2016)Google Scholar
  9. 9.
    Liu, X., João Nicolau, M., Costa, A., Macedo, J., Santos, A.: A geographic opportunistic forwarding strategy for vehicular named data networking. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds.) Intelligent Distributed Computing IX. SCI, vol. 616, pp. 509–521. Springer, Cham (2016). doi: 10.1007/978-3-319-25017-5_48 CrossRefGoogle Scholar
  10. 10.
    Ning, Z., Xia, F., Hu, X., et al.: Social-oriented adaptive transmission in opportunistic Internet of smartphones. IEEE Trans. Ind. Inform. 13(2), 810–820 (2017)CrossRefGoogle Scholar
  11. 11.
    Tian, D., Zhou, J., Wang, Y., et al.: An adaptive vehicular epidemic routing method based on attractor selection model. Ad Hoc Netw. 36, 465–481 (2016)CrossRefGoogle Scholar
  12. 12.
    Jain, S., Chawla, M., Soares, V.N.G.J., et al.: Enhanced fuzzy logic-based spray and wait routing protocol for delay tolerant networks. Int. J. Commun. Syst. 29(12), 1820–1843 (2016)CrossRefGoogle Scholar
  13. 13.
    Agarwal, N., Bhadouria, S.S.: Crime detection in rural areas using enhanced prophet routing algorithm in DTN. In: Symposium on Colossal Data Analysis and Networking (CDAN), pp. 1–5. IEEE (2016)Google Scholar
  14. 14.
    Das, M., Sarkar, S., Iqbal, S.M.A.: TTL based MaxProp routing protocol. In: 2016 19th International Conference on Computer and Information Technology (ICCIT), pp. 7–12. IEEE (2016)Google Scholar
  15. 15.
    Derakhshanfard, N., Sabaei, M., Rahmani, A.M.: Sharing spray and wait routing algorithm in opportunistic networks. Wirel. Netw. 22(7), 2403–2414 (2016)CrossRefGoogle Scholar
  16. 16.
    Keränen, A., Ott, J., Kärkkäinen, T.: The ONE simulator for DTN protocol evaluation. In: Proceedings of the 2nd International Conference on Simulation Tools and Techniques. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST), p. 55 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Haoyan Liang
    • 1
  • Zhigang Chen
    • 1
  • Jia Wu
    • 1
  • Peiyuan Guan
    • 1
  1. 1.School of SoftwareCentral South UniversityChangshaChina

Personalised recommendations