Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (Csur) 40(2), 5 (2008)
CrossRef
Google Scholar
Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D.: Query by image and video content: the QBIC system. Computer 28(9), 23–32 (1995)
CrossRef
Google Scholar
Mehrotra, S., Rui, Y., Chakrabarti, K., Ortega, M., Huang, T.S.: Multimedia analysis and retrieval system. In: Proceedings of the 3rd International Workshop on Information Retrieval Systems (1997)
Google Scholar
Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: content-based manipulation of image databases. Int. J. Comput. Vision 18(3), 233–254 (1996)
CrossRef
Google Scholar
Wilensky, R.: UC Berkeley’s digital library project. Commun. ACM 38(4), 60 (1995)
CrossRef
Google Scholar
Smith, J.R., Chang, S.-F.: VisualSEEk: a fully automated content-based image query system. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 87–98. ACM (1997)
Google Scholar
Xu, X., Peng, B., Sun, Z.: A semantic-based image retrieval system: VisEngine. Comput. Eng. 4, 021 (2004)
Google Scholar
Zhang, H., Wenyin, L., Hu, C.: IFIND—A system for semantics and feature based image retrieval over Internet. In: Proceedings of the Eighth ACM International Conference on Multimedia, pp. 477–478. ACM (2000)
Google Scholar
Wang, W., Wu, Y., Zhang, A.: SemView: a semantic-sensitive distributed image retrieval system. In: Proceedings of the 2003 Annual National Conference on Digital Government Research, pp. 1–4. Digital Government Society of North America (2003)
Google Scholar
Ghorab, M.R., Zhou, D., O’Connor, A., Wade, V.: Personalised information retrieval: survey and classification. User Model. User-Adap. Inter. 23(4), 381–443 (2013)
CrossRef
Google Scholar
Skowron, M., Tkalčič, M., Ferwerda, B., Schedl, M.: Fusing social media cues: personality prediction from twitter and instagram. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 107–108. International World Wide Web Conferences Steering Committee (2016)
Google Scholar
Liu, D., Hua, X.-S., Wang, M., Zhang, H.: Boost search relevance for tag-based social image retrieval. In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 1636–1639. IEEE (2009)
Google Scholar
Cheung, M., She, J.: Bag-of-features tagging approach for a better recommendation with social big data. In: Proceedings of the 4th International Conference on Advances in Information Mining and Management (IMMM 2014), pp. 83–88 (2014)
Google Scholar
Sang, J., Xu, C., Lu, D.: Learn to personalized image search from the photo sharing websites. IEEE Trans. Multimedia 14(4), 963–974 (2012)
CrossRef
Google Scholar
Qiu, Z.W., Zhang, T.W.: Individuation image retrieval based on user multimedia data management model. Acta Electron. Sin. 36(9), 1746–1749 (2008)
Google Scholar
Fan, J., Keim, D.A., Gao, Y., Luo, H., Li, Z.: JustClick: personalized image recommendation via exploratory search from large-scale Flickr images. IEEE Trans. Circuits Syst. Video Technol. 19(2), 273–288 (2009)
CrossRef
Google Scholar
Yu, J., Tao, D., Wang, M., Rui, Y.: Learning to rank using user clicks and visual features for image retrieval. IEEE Trans. Cybern. 45(4), 767–779 (2015)
CrossRef
Google Scholar
Zhang, H., Zha, Z.-J., Yang, Y., Yan, S., Gao, Y., Chua, T.-S.: Attribute-augmented semantic hierarchy: towards bridging semantic gap and intention gap in image retrieval. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 33–42. ACM (2013)
Google Scholar
Jayech, K., Mahjoub, M.A.: New approach using Bayesian Network to improve content based image classification systems. IJCSI Int. J. Comput. Sci. Issues 7(6), 53–62 (2010)
Google Scholar
Hu, T., Yu, J.: Max-margin based Bayesian classifier. Front. Inf. Technol. Electron. Eng. 17(10), 973–981 (2016)
CrossRef
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Google Scholar
Lin, C.-H., Chen, C.-C., Lee, H.-L., Liao, J.-R.: Fast K-means algorithm based on a level histogram for image retrieval. Expert Syst. Appl. 41(7), 3276–3283 (2014)
CrossRef
Google Scholar
Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)
CrossRef
MATH
Google Scholar
Wu, J., Xiao, Z.-B., Wang, H.-S., Shen, H.: Learning with both unlabeled data and query logs for image search. Comput. Electr. Eng. 40(3), 964–973 (2014)
CrossRef
Google Scholar
Su, J.-H., Huang, W.-J., Philip, S.Y., Tseng, V.S.: Efficient relevance feedback for content-based image retrieval by mining user navigation patterns. IEEE Trans. Knowl. Data Eng. 23(3), 360–372 (2011)
CrossRef
Google Scholar
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
CrossRef
Google Scholar
Paik, J.H.: A novel TF-IDF weighting scheme for effective ranking. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 343–352. ACM (2013)
Google Scholar
Whissell, J.S., Clarke, C.L.: Improving document clustering using Okapi BM25 feature weighting. Inf. Retrieval 14(5), 466–487 (2011)
CrossRef
Google Scholar
Zhang, J., Zhuo, L., Shen, L., He, L.: A personalized image retrieval based on user interest model. Int. J. Pattern Recogn. Artif. Intell. 24(03), 401–419 (2010)
CrossRef
Google Scholar
Nie, W., Li, X., Liu, A., Su, Y.: 3D object retrieval based on Spatial+LDA model. Multimedia Tools Appl. 76(3), 4091–4104 (2017)
CrossRef
Google Scholar
Li, X., Ouyang, J., Lu, Y.: Topic modeling for large-scale text data. Front. Inf. Technol. Electron. Eng. 16(6), 457–465 (2015)
CrossRef
Google Scholar
Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern. 1(1), 43–52 (2010)
CrossRef
Google Scholar
Tu, N.A., Dinh, D.-L., Rasel, M.K., Lee, Y.-K.: Topic modeling and improvement of image representation for large-scale image retrieval. Inf. Sci. 366, 99–120 (2016)
MathSciNet
CrossRef
Google Scholar
Shekhar, R., Jawahar, C.: Word image retrieval using bag of visual words. In: 2012 10th IAPR International Workshop on Document Analysis Systems (DAS), pp. 297–301. IEEE (2012)
Google Scholar
Yang, J., Jiang, Y.-G., Hauptmann, A.G., Ngo, C.-W.: Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the International Workshop on Multimedia Information Retrieval, pp. 197–206. ACM (2007)
Google Scholar
Liu, L.: Contextual topic model based image recommendation system. In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 239–240. IEEE (2015)
Google Scholar
Jia, D., Berg, A.C., Li, F.F.: Hierarchical semantic indexing for large scale image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 785–792 (2011)
Google Scholar
Jiang, X., Tan, A.-H.: Learning and inferencing in user ontology for personalized Semantic Web search. Inf. Sci. 179(16), 2794–2808 (2009)
CrossRef
MATH
Google Scholar
Geng, X., Zhang, H., Bian, J., Chua, T.-S.: Learning image and user features for recommendation in social networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4274–4282 (2015)
Google Scholar
Lei, C., Liu, D., Li, W., Zha, Z.J., Li, H.: Comparative deep learning of hybrid representations for image recommendations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2545–2553 (2016)
Google Scholar
Song, G., Jin, X., Chen, G., Nie, Y.: Two-level hierarchical feature learning for image classification. Front. Inf. Technol. Electron. Eng. 17(9), 897–906 (2016)
CrossRef
Google Scholar
Burdescu, D.D., Mihai, C.G., Stanescu, L., Brezovan, M.: Automatic image annotation and semantic based image retrieval for medical domain. Neurocomputing 109, 33–48 (2013)
CrossRef
Google Scholar
Kurtz, C., Depeursinge, A., Napel, S., Beaulieu, C.F., Rubin, D.L.: On combining image-based and ontological semantic dissimilarities for medical image retrieval applications. Med. Image Anal. 18(7), 1082–1100 (2014)
CrossRef
Google Scholar
Kurtz, C., Beaulieu, C.F., Napel, S., Rubin, D.L.: A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. J. Biomed. Inform. 49, 227–244 (2014)
CrossRef
Google Scholar
Rui, Y., Huang, T.S.: A novel relevance feedback technique in image retrieval. In: Proceedings of the Seventh ACM International Conference on Multimedia (Part 2), pp. 67–70. ACM (1999)
Google Scholar
Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The Smart Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall Inc., Englewood Cliffs (1971)
Google Scholar
Porkaew, K., Chakrabarti, K.: Query refinement for multimedia similarity retrieval in MARS. In: Proceedings of the Seventh ACM International Conference on Multimedia (Part 1), pp. 235–238. ACM (1999)
Google Scholar
Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1088–1099 (2006)
CrossRef
Google Scholar
Johnson, M., Shotton, J., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition, pp. 211–227. Springer, London (2013)
CrossRef
Google Scholar
Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proceedings of the Ninth ACM International Conference on Multimedia, pp. 107–118. ACM (2001)
Google Scholar
Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved recommendation based on collaborative tagging behaviors. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp. 413–416. ACM (2008)
Google Scholar
Gong, S.J.: Personalized recommendation system based on association rules mining and collaborative filtering. In: Wang, Y. (ed.) Applied Mechanics and Materials, pp. 540–544. Trans Tech Publ, Zürich (2011)
Google Scholar
Ju, B., Qian, Y., Ye, M.: Preference transfer model in collaborative filtering for implicit data. Front. Inf. Technol. Electron. Eng. 17(6), 489–500 (2016)
CrossRef
Google Scholar
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)
Google Scholar
Zhou, K., Yang, S.-H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 315–324. ACM (2011)
Google Scholar
Yuan, Z., Huang, C., Sun, X., Li, X., Xu, D.: A microblog recommendation algorithm based on social tagging and a temporal interest evolution model. Front. Inf. Technol. Electron. Eng. 16(7), 532–540 (2015)
CrossRef
Google Scholar
Tiraweerakhajohn, C., Pinngern, O.: A combination of content-based filtering and item-based collaborative filtering using association rules. In: The 1st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. ECTI, Thailand (2004)
Google Scholar
Lei, W., Qing, F., Zhou, J.: Improved personalized recommendation based on causal association rule and collaborative filtering. Int. J. Distance Educ. Technol. (IJDET) 14(3), 21–33 (2016)
CrossRef
Google Scholar
Ye, H.: A personalized collaborative filtering recommendation using association rules mining and self-organizing map. JSW 6(4), 732–739 (2011)
CrossRef
Google Scholar
Thorat, P.B., Goudar, R., Barve, S.: Survey on collaborative filtering, content-based filtering and hybrid recommendation system. Int. J. Comput. Appl. 110(4), 31–36 (2015)
Google Scholar
Ma, Z., Leijon, A.: A model-based collaborative filtering method for bounded support data. In: 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 545–548. IEEE (2012)
Google Scholar
Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., Cantador, I.: Alleviating the new user problem in collaborative filtering by exploiting personality information. User Model. User-Adap. Inter. 26(2–3), 221–255 (2016)
CrossRef
Google Scholar
Yang, C., Zhou, Y., Chen, L., Zhang, X., Chiu, D.M.: Social-group-based ranking algorithms for cold-start video recommendation. Int. J. Data Sci. Anal. 1(3–4), 165–175 (2016)
CrossRef
Google Scholar
Candillier, L., Meyer, F., Boullé, M.: Comparing state-of-the-art collaborative filtering systems. In: Perner, P. (ed.) MLDM 2007. LNCS, vol. 4571, pp. 548–562. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73499-4_41
CrossRef
Google Scholar
Sanchez, F., Barrilero, M., Uribe, S., Alvarez, F., Tena, A., Menendez, J.M.: Social and content hybrid image recommender system for mobile social networks. Mob. Netw. Appl. 17(6), 782–795 (2012)
CrossRef
Google Scholar
Lekakos, G., Caravelas, P.: A hybrid approach for movie recommendation. Multimedia Tools Appl. 36(1), 55–70 (2008)
CrossRef
Google Scholar
Widisinghe, A., Ranasinghe, D., Kulathilaka, K., Kaluarachchi, R., Wimalawarne, K.A.D.N.K.: picSEEK: collaborative filtering for context-based image recommendation. In: International Conference on Information and Automation for Sustainability, pp. 225–232 (2010)
Google Scholar
Liu, X., Tsai, M.H., Huang, T.: Analyzing user preference for social image recommendation. arXiv:1604.07044 [cs.IR] (2016)