Query Optimization Strategies in Probabilistic Relational Databases

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 768)


Most existing optimization strategies for relational algebra queries in probabilistic relational databases focus on accelerating probability computation of lineage expressions of answering tuples. However, none of them take into account simplifying lineage expression during query processing. To this aim, an optimization method that makes use of integrity constraints to generate simplified lineage expressions for query results is proposed. The simplified lineage expressions for two algebra operations are generated under functional dependency constraints and referential constraints separately. The effectiveness of the optimization strategies for relational algebra queries is demonstrated in the experiment.


Probabilistic databases Query optimization Functional dependency constraints Referential constraints 


  1. 1.
    Agreste, S., De Meo, P., Ferrara, E., Ursino, D.: Xml matchers: approaches and challenges. Knowl.-Based Syst. 66, 190–209 (2014)CrossRefGoogle Scholar
  2. 2.
    Ayat, N., Akbarinia, R., Afsarmanesh, H., Valduriez, P.: Entity resolution for probabilistic data. Inf. Sci. 277, 492–511 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cheng, R., Chen, J., Xie, X.: Cleaning uncertain data with quality guarantees. Proc. VLDB Endowment 1(1), 722–735 (2008)CrossRefGoogle Scholar
  4. 4.
    Cormode, G., Srivastava, D., Shen, E., Yu, T.: Aggregate query answering on possibilistic data with cardinality constraints. In: The 29th IEEE International Conference on Data Engineering (ICDE), pp. 258–269. IEEE Computer Society, Arlington (2012)Google Scholar
  5. 5.
    Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Commun. ACM 52(7), 86–94 (2009)CrossRefGoogle Scholar
  6. 6.
    Feng, H., Wang, H., Li, J., Gao, H.: Entity resolution on uncertain relations. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 77–86. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38562-9_8 CrossRefGoogle Scholar
  7. 7.
    Fink, R., Olteanu, D.: Dichotomies for queries with negation in probabilistic databases. ACM Trans. Database Syst. 41(1), 4–47 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: The 27th IEEE International Conference on Data Engineering (ICDE), pp. 315–326. IEEE Computer Society, Hannover (2011)Google Scholar
  9. 9.
    Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Syst. (TOIS) 15(1), 32–66 (1997)CrossRefGoogle Scholar
  10. 10.
    Lian, X., Chen, L.: Probabilistic top-k dominating queries in uncertain databases. Inf. Sci. 226, 23–46 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mahmood, N., Burney, S.A., Ahsan, K.: Generic temporal and fuzzy ontological framework (gtfof) for developing temporal-fuzzy database model for managing patient’s data. J. UCS 18(2), 177–193 (2012)Google Scholar
  12. 12.
    Mo, L., Cheng, R., Li, X., Cheung, D.W.l., Yang, X.S.: Cleaning uncertain data for top-k queries. In: The 29th IEEE International Conference on Data Engineering (ICDE), pp. 134–145. IEEE Computer Society, Brisbane (2013)Google Scholar
  13. 13.
    Qin, B.: Efficient queries evaluation on block independent disjoint probabilistic databases. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS, vol. 9050, pp. 74–88. Springer, Cham (2015). doi: 10.1007/978-3-319-18123-3_5 Google Scholar
  14. 14.
    Ré, C., Suciu, D.: Materialized views in probabilistic databases: for information exchange and query optimization. In: The 33rd International Conference on Very Large Data Bases, pp. 51–62. VLDB Endowment, University of Vienna, Austria (2007)Google Scholar
  15. 15.
    Roy, S., Perduca, V., Tannen, V.: Faster query answering in probabilistic databases using read-once functions. In: the 14th International Conference on Database Theory (ICDT), pp. 232–243. ACM, New York (2011)Google Scholar
  16. 16.
    Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In: The 22nd International Conference on Data Engineering (ICDE), pp. 2–7. IEEE Computer Society, Atlanta (2006)Google Scholar
  17. 17.
    Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilistic databases. In: The 23rd IEEE International Conference on Data Engineering (ICDE), pp. 596–605. IEEE Computer Society, Istanbul (2007)Google Scholar
  18. 18.
    Sen, P., Deshpande, A., Getoor, L.: PRDB: managing and exploiting rich correlations in probabilistic databases. VLDB J. 18(5), 1065–1090 (2009)CrossRefGoogle Scholar
  19. 19.
    Škrbić, S., Racković, M., Takači, A.: Prioritized fuzzy logic based information processing in relational databases. Knowl.-Based Syst. 38, 62–73 (2013)CrossRefGoogle Scholar
  20. 20.
    Song, W., Yu, J.X., Cheng, H., Liu, H., He, J., Du, X.: Bayesian network structure learning from attribute uncertain data. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 314–321. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32281-5_31 CrossRefGoogle Scholar
  21. 21.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synth. Lect. Data Manag. 3(2), 1–180 (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Tang, R., Shao, D., Ba, M.L., Wu, H.: Conditioning probabilistic relational data with referential constraints. In: Han, W.-S., Lee, M.L., Muliantara, A., Sanjaya, N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp. 413–427. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43984-5_32 Google Scholar
  23. 23.
    Widom, J.: Trio: a system for integrated management of data, accuracy, and lineage. In: CIDR, pp. 262–276. ACM, New York (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Zhejiang University of Water Resources and Electric PowerHangzhouChina
  2. 2.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations