Degree Correlations in Two Layer Growth Model with Nonlinear Preferential Attachment Rule

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 768)

Abstract

Most real-world complex systems have multiple subsystems and layers of connectivity. All such systems can be described and represented in terms of multiplex network model, where the edges at each layer stand for the interactions of a different type between the same set of vertices. To better characterize and simulate such multiplex systems, we propose a new two layers network growth model based on nonlinear preferential attachment rule. Moreover, we obtain the joint degree distribution expression of the model via the rate equation approach at the steady state, and discuss the joint degree distribution and conditional average degree for the models of two different vertex weighted function, respectively. It was found that some existing multiplex network model is one of special cases of the model, and the corresponding joint degree distribution and the conditional average degree can also be obtained by the joint degree distribution expression of the model. Also, we observe that the conditional average degree expression is identical for the models of two different vertex weighted function. To verify our theoretical results, we perform Monte Carlo simulations for the models of two different vertex weighted function. Experiments indicate that our theoretical results are in accordance with the Monte Carlo simulation results well.

Keywords

Multiplex network model Nonlinear preferential attachment rule Joint degree distribution Conditional average degree 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61262006, 61462001, 61540050, 61762019), the Major Applied Basic Research Program of Guizhou Province (Grant No. JZ20142001), and the Graduate Student Innovation Foundation of Guizhou University (Grant No. 2016047).

References

  1. 1.
    Faioutsos, M., Faioutsos, P., Faioutsos, C.: On powerlaw relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)CrossRefGoogle Scholar
  2. 2.
    Albert, R.: Diameter of the world wide web. Nat. Int. J. Sci. 401, 130–131 (1999)Google Scholar
  3. 3.
    Dorogovtsev, S.N., Mendes, J.F.F., Oliveira, J.G.: Frequency of occurrence of numbers in the world wide web. Phys. A Stat. Mech. Appl. 360, 548–556 (2005)CrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: From the cover: the structure of scientific collaboration networks. Proc. Nat. Acad. Sci. 98, 404–409 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Savić, M., Ivanović, M., Radovanović, M., et al.: The structure and evolution of scientific collaboration in serbian mathematical journals. Scientometrics 101, 1805–1830 (2014)CrossRefGoogle Scholar
  6. 6.
    Boccaletti, S., Latora, V., Moreno, Y., et al.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Vazquez, A.: Degree correlations and clustering hierarchy in networks: measures, origin and consequences. Brain Res. 2, 393–396 (2002)Google Scholar
  8. 8.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. U.S.A. 99, 7821 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nicosia, V., Bianconi, G., Latora, V., et al.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)CrossRefGoogle Scholar
  13. 13.
    Kim, J.Y., Goh, K.I.: Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111, 058702 (2013)CrossRefGoogle Scholar
  14. 14.
    Nicosia, V., Bianconi, G., Latora, V., et al.: Nonlinear growth and condensation in multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 042807 (2013)CrossRefGoogle Scholar
  15. 15.
    Fotouhi, B., Momeni, N.: Growing multiplex networks with arbitrary number of layers. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 062812 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fotouhi, B., Momeni, N.: Inter-layer degree correlations in heterogeneously growing multiplex networks. In: Mangioni, G., Simini, F., Uzzo, S., Wang, D. (eds.) Complex Networks VI. Studies in Computational Intelligence, vol. 597, pp. 159–170. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-16112-9_16 Google Scholar
  17. 17.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 032804 (2014)CrossRefGoogle Scholar
  18. 18.
    Solá, L., Romance, M., Criado, R., et al.: Eigenvector centrality of nodes in multiplex networks. Chaos 23, 033131 (2013)CrossRefMATHGoogle Scholar
  19. 19.
    Criado, R., Flores, J., Amo, A.G.D.: A mathematical model for networks with structures in the mesoscale. Int. J. Comput. Math. 89, 291–309 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Min, B., Yi, S.D., Lee, K.M., et al.: Network robustness of multiplex networks with interlayer degree correlations. Phys. Rev. E. 89, 042811 (2014)CrossRefGoogle Scholar
  21. 21.
    Nicosia, V., Latora, V.: Measuring and modeling correlations in multiplex networks. Phys. Rev. E. 92, 032805 (2014)CrossRefGoogle Scholar
  22. 22.
    Domenico, M.D., Solèribalta, A., Cozzo, E., et al.: Mathematical formulation of multi-layer networks. Phys. Rev. E. 3, 4192–4195 (2013)Google Scholar
  23. 23.
    Kivelä, M., Arenas, A., Barthelemy, M., et al.: Multilayer networks. SSRN Electron. J. 2, 261–268 (2013)Google Scholar
  24. 24.
    Gómezgardeñes, J.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)CrossRefGoogle Scholar
  25. 25.
    Cozzo, E., Baños, R.A., Meloni, S., et al.: Contact-based social contagion in multiplex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 050801 (2013)CrossRefGoogle Scholar
  26. 26.
    Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)CrossRefGoogle Scholar
  27. 27.
    Zhao, D., Li, L., Peng, H., et al.: Multiple routes transmitted epidemics on multiplex networks. Phys. Lett. A. 378, 770–776 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Buono, C., Alvarezzuzek, L.G., Macri, P.A., et al.: Epidemics in partially overlapped multiplex networks. Plos One 9, 92200 (2014)CrossRefGoogle Scholar
  29. 29.
    Gómezgardeñes, J., Reinares, I., Arenas, A., et al.: Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012)CrossRefGoogle Scholar
  30. 30.
    Nicosia, V., Valencia, M., Chavez, M., et al.: Remote synchronization reveals network symmetries and functional modules. Phys. Rev. Lett. 110, 174102 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhou, J.: Percolation in multiplex networks with overlap. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 052811 (2013)CrossRefGoogle Scholar
  32. 32.
    Bianconi, G., Dorogovtsev, S.N.: Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89, 062814 (2014)CrossRefGoogle Scholar
  33. 33.
    Battiston, F., Nicosia, V., Latora, V.: Biased random walks on multiplex networks. Comput. Sci. 18, 043035 (2015)Google Scholar
  34. 34.
    Guo, Q., Cozzo, E., Zheng, Z., et al.: Lévy random walks on multiplex networks. Sci. Rep. 6, 37641 (2016)CrossRefGoogle Scholar
  35. 35.
    Zadorozhnyi, V.N., Yudin, E.B.: Growing network: models following nonlinear preferential attachment rule. Phys. A Stat. Mech. Appl. 428, 111–132 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lu, Y.J., Xu, D.Y., Zhou, J.C.: Vertex degree distribution in growth models with nonlinear preferential attachment rule. J. Beijing Univ. Posts Telecommun. 39, 116–123 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyGuizhou UniversityGuiyangChina
  2. 2.School of Mathematics and StatisticsQiannan Normal University for NationalitiesDuyunChina

Personalised recommendations