Skip to main content

Smoothed Particle Hydrodynamics for Ductile Solid Continua

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4479 Accesses

Abstract

In this chapter, a numerical simulation model for ductile solid continua is presented. It is based on the Smoothed Particle Hydrodynamics (SPH) method, which serves to spatially discretize and, thus, solve the governing equations of continuum mechanics. Due to the meshless, Lagrangian character of the SPH spatial discretization technique, the introduced model is naturally well-suited for the simulation of continua featuring large deformations, major changes in topology, material failure including structure disintegration, and/or a large number of contacts with the environment occurring at the same time. For this reason, it has the potential to become a beneficial complement to the well-established numerical solid models, which mainly make use of mesh-based methods. To that end, however, the original SPH discretization scheme is to be variously extended and modified as discussed in detail in the course of this chapter. Besides, also its efficient implementation, i.e. the efficient numerical solution of the SPH-discretized governing equations of continuum mechanics, is addressed. The quality of the developed SPH formulation for ductile solids including its versatility and accuracy is demonstrated on the basis of two exemplary applications, namely, the industrial processes of friction stir welding and orthogonal metal cutting. It is shown as part of this contribution that, in either case, the proposed SPH model for ductile solid continua is capable of reproducing both the mechanical and the thermal macroscopic behavior of the real processed material in the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurtin ME. An introduction to continuum mechanics. San Diego: Academic Press; 1981.

    MATH  Google Scholar 

  2. Gingold RA, Monaghan JJ. Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89.

    Article  MATH  Google Scholar 

  3. Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82(12):1013–24.

    Article  Google Scholar 

  4. Pasimodo [Internet]. Stuttgart: Institute of Engineering and Computational Mechanics, University of Stuttgart; 2009 [updated 7 Aug 2015; cited 1 Aug 2016]. Available from: http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php.

  5. Liu MB, Liu GR. Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Arch Comput Method E. 2010;17(1):25–76.

    Article  MathSciNet  MATH  Google Scholar 

  6. Monaghan JJ. Smoothed Particle Hydrodynamics. Rep Prog Phys. 2005;68(8):1703–59.

    Article  MathSciNet  MATH  Google Scholar 

  7. Violeau D. Fluid mechanics and the SPH method: theory and applications. Oxford: Oxford University Press; 2012.

    Book  MATH  Google Scholar 

  8. Dehnen W, Aly H. Improving convergence in Smoothed Particle Hydrodynamics simulations without pairing instability. Mon Not R Astron Soc. 2012;425(2):1068–82.

    Article  Google Scholar 

  9. Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math. 1995;4(1):389–96.

    Article  MathSciNet  MATH  Google Scholar 

  10. Amicarelli A, Marongiu JC, Leboeuf F, Leduc J, Neuhauser M, Fang L, Caro J. SPH truncation error in estimating a 3D derivative. Int J Numer Meth Eng. 2011;87(7):677–700.

    Article  MathSciNet  MATH  Google Scholar 

  11. Belytschko T, Krongauz Y, Dolbow J, Gerlach C. On the completeness of meshfree particle methods. Int J Numer Meth Eng. 1998;43(5):785–819.

    Article  MathSciNet  MATH  Google Scholar 

  12. Haupt P. Continuum mechanics and theory of materials. 2nd ed. Berlin: Springer; 2002.

    Book  MATH  Google Scholar 

  13. Batchelor GK. An introduction to fluid dynamics. Cambridge: Cambridge University Press; 2000.

    Book  Google Scholar 

  14. Eringen AC. Mechanics of continua. New York: Wiley; 1967.

    MATH  Google Scholar 

  15. Acheson DJ. Elementary fluid dynamics. Oxford: Clarendon; 1990.

    MATH  Google Scholar 

  16. Dill EH. Continuum mechanics: elasticity, plasticity, viscoelasticity. Boca Raton: CRC; 2006.

    Google Scholar 

  17. Sod GA. Survey of several Finite Difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys. 1978;27(1):1–31.

    Article  MathSciNet  MATH  Google Scholar 

  18. Monaghan JJ, Gingold RA. Shock simulation by the particle method SPH. J Comput Phys. 1983;52(2):374–89.

    Article  MATH  Google Scholar 

  19. Monaghan JJ. Smoothed Particle Hydrodynamics. Annu Rev Astron Astr. 1992;30:543–74.

    Article  Google Scholar 

  20. Glatzmaier GA. Introduction to modeling convection in planets and stars: magnetic field, density stratification, rotation. Princeton: Princeton University Press; 2014.

    MATH  Google Scholar 

  21. Chakrabarty J. Applied plasticity. New York: Springer; 2000.

    Book  MATH  Google Scholar 

  22. Kaviany M. Principles of heat transfer. New York: Wiley; 2002.

    Book  MATH  Google Scholar 

  23. Cleary PW, Monaghan JJ. Conduction modelling using Smoothed Particle Hydrodynamics. J Comput Phys. 1999;148(1):227–64.

    Article  MathSciNet  MATH  Google Scholar 

  24. Burshtein AI. Introduction to thermodynamics and kinetic theory of matter. 2nd ed. Berlin: Wiley; 2005.

    Book  Google Scholar 

  25. Doghri I. Mechanics of deformable solids: linear, nonlinear, analytical and computational aspects. Berlin: Springer; 2000.

    Book  MATH  Google Scholar 

  26. Simo JC, Hughes TJR. Computational inelasticity. 2nd ed. New York: Springer; 1998.

    MATH  Google Scholar 

  27. Dieter GE. Mechanical metallurgy. New York: McGraw-Hill; 1961.

    Book  Google Scholar 

  28. Paterson MS, Wong TF. Experimental rock deformation – the brittle field. 2nd ed. Berlin: Springer; 2005.

    Google Scholar 

  29. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: American Defense Preparedness Association, Royal Netherlands Society of Engineers. Proceedings of the 7th international symposium on ballistics, The Hague; 19–21 Apr 1983. pp. 541–7.

    Google Scholar 

  30. Spreng F. Smoothed Particle Hydrodynamics for ductile solids [dissertation]. Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Band 48. Aachen: Shaker Verlag; 2017.

    Google Scholar 

  31. Farren WS, Taylor GI. The heat developed during plastic extension of metals. P Roy Soc Lond A Mat. 1925;107(743):422–51.

    Article  Google Scholar 

  32. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31–48.

    Article  Google Scholar 

  33. Grady DE, Kipp ME. Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min. 1980;17(3):147–57.

    Article  Google Scholar 

  34. Monaghan JJ. SPH without a tensile instability. J Comput Phys. 2000;159(2):290–311.

    Article  MathSciNet  MATH  Google Scholar 

  35. Gray JP, Monaghan JJ, Swift RP. SPH elastic dynamics. Comput Method Appl Mech. 2001;190(49–50):6641–62.

    Article  MATH  Google Scholar 

  36. Müller A. Dynamic refinement and coarsening for the Smoothed Particle Hydrodynamics method [dissertation]. Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Band 46. Aachen: Shaker Verlag; 2017.

    Google Scholar 

  37. Randles PW, Libersky LD. Smoothed Particle Hydrodynamics: some recent improvements and applications. Comput Method Appl Mech. 1996;139(1–4):375–408.

    Article  MathSciNet  MATH  Google Scholar 

  38. Shapiro PR, Martel H, Villumsen JV, Owen JM. Adaptive Smoothed Particle Hydrodynamics, with application to cosmology: methodology. Astrophys J Suppl Ser. 1996;103(2):269–330.

    Article  Google Scholar 

  39. Owen JM, Villumsen JV, Shapiro PR, Martel H. Adaptive Smoothed Particle Hydrodynamics: methodology. II. Astrophys J Suppl Ser. 1998;116(2):155–209.

    Article  Google Scholar 

  40. Thacker RJ, Tittley ER, Pearce FR, Couchman HMP, Thomas PA. Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations. Mon Not R Astron Soc. 2000;319(2):619–48.

    Article  Google Scholar 

  41. Springel V, Hernquist L. Cosmological Smoothed Particle Hydrodynamics simulations: the entropy equation. Mon Not R Astron Soc. 2002;333(3):649–64.

    Article  Google Scholar 

  42. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Clarendon Press; 1989.

    MATH  Google Scholar 

  43. Schinner A. Fast algorithms for the simulation of polygonal particles. Granul Matter. 1999;2(1):35–43.

    Article  Google Scholar 

  44. Müller M, Schirm S, Teschner M, Heidelberger B, Gross M. Interaction of fluids with deformable solids. Comput Anim Virtual Worlds. 2004;15(3–4):159–71.

    Article  Google Scholar 

  45. Monaghan JJ, Kos A, Issa N. Fluid motion generated by impact. J Waterw Port C-ASCE. 2003;129(6):250–9.

    Article  Google Scholar 

  46. Hut P, Makino J, McMillan S. Building a better leapfrog. Astrophys J. 1995;443(2):L93–6.

    Article  Google Scholar 

  47. Mishra RS, Ma ZY. Friction stir welding and processing. Mat Sci Eng R. 2005;50(1–2):1–78.

    Article  Google Scholar 

  48. Tang W, Guo X, McClure JC, Murr LE, Nunes A. Heat input and temperature distribution in friction stir welding. J Mater Process Manu. 1998;7(2):163–72.

    Article  Google Scholar 

  49. Armarego EJA, Brown RH. The machining of metals. Englewood Cliffs: Prentice-Hall; 1969.

    Google Scholar 

  50. Boothroyd G, Knight WA. Fundamentals of machining and machine tools. 3rd ed. Boca Raton: CRC; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eberhard, P., Spreng, F. (2019). Smoothed Particle Hydrodynamics for Ductile Solid Continua. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_28

Download citation

Publish with us

Policies and ethics