Skip to main content

Thermal Vibration of Carbon Nanostructures

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

The chapter presents the study on thermal vibration of nanostructures, such as carbon nanotube (CNT) and graphene, as well as the basic finding for the relation between the temperature and the root-of-mean-square (RMS) amplitude of the thermal vibration of the carbon nanostructures. In this study, the molecular dynamics (MD) based on modified Langevin dynamics, which accounts for quantum statistics by introducing a quantum heat bath, is used to simulate the thermal vibration of carbon nanostructures. The simulations show that the RMS amplitude of the thermal vibration of the carbon nanostructures obtained from the semi-quantum MD is lower than that obtained from the classical MD, especially for very low temperature and high-order vibration modes. The RMS amplitudes of the thermal vibrations of the single-walled CNT (SWCNT) and graphene obtained from the semi-quantum MD coincide well with those from the models of Timoshenko beam and Kirchhoff plate with quantum effects. These results indicate that quantum effects are important for the thermal vibration of the SWCNT and graphene in the case of high-order vibration modes, small size, and low temperature. Furthermore, the thermal vibration of a simply supported SWCNT subject to thermal stress is investigated by using the models of planar and non-planar nonlinear beams, respectively. The whirling motion with energy transfer between flexural motions is found in the SWCNT when the geometric nonlinearity is significant. The energies of different vibration modes are not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energies of different modes become equal when the time scale increases to the range of microseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science. 1997;276:917.

    Article  Google Scholar 

  2. Poncharal P, Wang ZL, Ugarte D, de Heer WA. Electrostatic deflections and electromechanical resonances of CNTs. Science. 1999;283:1513–6.

    Article  Google Scholar 

  3. Garcia-Sanchez D, San Paulo A, Esplandiu M, Perez-Murano F, Forró L, Aguasca A, Bachtold A. Mechanical detection of CNT resonator vibrations. Phys Rev Lett. 2007;99:085501.

    Google Scholar 

  4. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.

    Article  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  Google Scholar 

  6. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of CNTs. Appl Mech Rev. 2002;55:495–533.

    Article  Google Scholar 

  7. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual. Nature. 1996;381:678–80.

    Article  Google Scholar 

  8. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B. 1998;58(20):14013.

    Article  Google Scholar 

  9. Barnard AW, Sazonova V, van der Zande AM, McEuen PK. Fluctuation broadening in CNT resonators. Proc Natl Acad Sci U S A. 2012;109(47):19093–6.

    Article  Google Scholar 

  10. Wang LF, HY H, Guo WL. Thermal vibration of CNTs predicted by beam models and molecular dynamics. Proc Roy Soc A. 2010;466(2120):2325–40.

    Article  Google Scholar 

  11. Feng EH, Jones RE. Equilibrium thermal vibrations of CNTs. Phys Rev B. 2010;81:125436.

    Article  Google Scholar 

  12. Feng EH, Jones RE. CNT cantilevers for next-generation sensors. Phys Rev B. 2011;83:125412.

    Article  Google Scholar 

  13. Wang LF, Hu HY. Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 2012;223(10):2107–15.

    Article  MathSciNet  Google Scholar 

  14. Moser J, Eichler A, Güttinger J, Dykman MI, Bachtold A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat Nanotechnol. 2014;9:1007.

    Article  Google Scholar 

  15. Thomson WT. Theory of vibration with applications. Englewood Cliffs: Prentice-Hall; 1972.

    Google Scholar 

  16. Yoon J, CQ R, Mioduchowski A. Terahertz vibration of short CNTs modeled as Timoshenko beams. J Appl Mech. 2005;72(1):10–7.

    Article  Google Scholar 

  17. Wang LF, Flexural HHY. Wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.

    Article  Google Scholar 

  18. Huang TC. The effect of rotatory inertia and of shear deformation on frequency and normal mode equations of uniform beams with simple end conditions. J Appl Mech. 1961;28:579–84.

    Article  MathSciNet  Google Scholar 

  19. Liew KM, YG H, He XQ. Flexural wave propagation in single-walled carbon nanotubes. J Comput Theor Nanosci. 2008;5:581.

    Article  Google Scholar 

  20. Hone J, Batlogg B, Benes Z, Johnson AT, Fisher JE. Quantized phonon spectrum of single-walled CNTs. Science. 2000;289:1730–3.

    Article  Google Scholar 

  21. O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis JM, Cleland AN. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010;464:697–703.

    Article  Google Scholar 

  22. Parrinello M, Car R. Unified approach for molecular dynamics and density - functional theory. Phys Rev Lett. 1985;55:2471–4.

    Article  Google Scholar 

  23. Miller WH. Quantum dynamics of complex molecular systems. Proc Natl Acad Sci U S A. 2005;102:6660–4.

    Article  Google Scholar 

  24. Wang JS. Quantum thermal transport from classical molecular dynamics. Phys Rev Lett. 2007;99:160601.

    Article  Google Scholar 

  25. Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet JJ. Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett. 2009;103:190601.

    Article  Google Scholar 

  26. Savin AV, Kosevich YA, Cantarero A. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B. 2012;86:064305.

    Article  Google Scholar 

  27. Wang LF, Hu HY. Thermal vibration of single-walled CNTs with quantum effects. Proc Roy Soc A. 2014;470:20140087.

    Article  Google Scholar 

  28. Liu RM, Wang LF. Thermal vibration of a single-walled CNT predicted by semiquantum molecular dynamics. Phys Chem Chem Phys. 2015;17:5194–201.

    Article  Google Scholar 

  29. Lahiri A. Statistical mechanics: an elementary outline. India: Universities Press Private Ltd; 2009.

    Google Scholar 

  30. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter. 2002;14:783–802.

    Article  Google Scholar 

  31. Brünger A, Brooks CL III, Karplus M. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett. 1984;105:495.

    Article  Google Scholar 

  32. Eichler A, Del Álamo Ruiz M, Plaza JA, Bachtold A. Strong coupling between mechanical modes in a nanotube resonator. Phys Rev Lett. 2012;109:025503.

    Article  Google Scholar 

  33. Koh H, Cannon JJ, Shiga T, Shiomi J, Chiashi S, Maruyama S. Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys Rev B. 2015;92:024306.

    Article  Google Scholar 

  34. Wang LF, Hu HY. Thermal vibration of a simply supported single-walled carbon nanotube with thermal stress. Acta Mech. 2016;227(7):1957–67.

    Article  MathSciNet  Google Scholar 

  35. Tounsi A, Heireche H, Berrabah HM, Benzair A, Boumia L. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J Appl Phys. 2008;104:104301.

    Article  Google Scholar 

  36. Zhu WQ. Random vibration. Beijing: Science Press; 1998.

    Google Scholar 

  37. Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam-I, forced motions. Int J Non Linear Mech. 1975; 10: 113–127; Ho CH, Scott RA, Elsley JG. Non-planar, non-linear oscillations of a beam II, free motion. J Sound Vib. 1976; 47:333.

    Article  Google Scholar 

  38. Liu RM, Wang LF. Coupling between flexural modes in free vibration of single-walled carbon nanotubes. AIP Adv. 2015;5:127110.

    Article  Google Scholar 

  39. Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech. 1978; 6:437; Crespo Da Silva MRM, Glynn CC. Nonlinear flexural-flexural-torsional dynamics of inextensional beams. II. Forced motions. J Struct Mech. 1978; 6:449.

    Google Scholar 

  40. He XQ, Kitipornchai S, Liew KM. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nano. 2005;16:2086–91.

    Google Scholar 

  41. Wang LF, Hu HY. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects. J Appl Phys. 2014;115:233515.

    Article  Google Scholar 

  42. Wang LF, Hu HY. Thermal vibration of a circular single-layered graphene sheet with simply supported or clamped boundary. J Sound Vib. 2015;349:206–15.

    Article  Google Scholar 

  43. Leissa AW. Vibration of plates. Washington DC: NASA; 1969.

    Google Scholar 

  44. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL. Electromechanical resonators from graphene sheets. Science. 2007;315:490–3.

    Article  Google Scholar 

  45. Cormier J, Rickman JM, Delph TJ. Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys. 2001;89:99–104.

    Article  Google Scholar 

  46. Xu W, Wang LF, Jiang JN. Strain gradient finite element analysis on the vibration of double-layered graphene sheets. Int J Comput Methods. 2016;13:1650011.

    Article  MathSciNet  Google Scholar 

  47. Liu RM, Wang LF, Jiang JN. Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Express. 2016;3(9):095601.

    Article  Google Scholar 

  48. Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92(6):063111.

    Article  Google Scholar 

  49. Natsuki T, Shi JX, Ni QQ. Vibration analysis of circular double-layered graphene sheets. J Appl Phys. 2012;111:044310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, L., Hu, H., Liu, R. (2019). Thermal Vibration of Carbon Nanostructures. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_16

Download citation

Publish with us

Policies and ethics