Skip to main content

Role of Microbial Technology in Agricultural Sustainability

  • Chapter
  • First Online:

Abstract

Agriculture is one of the most ancient practiced and source of livelihood that persist till today. With continuous increase in population, conventional agriculture practices are incapable to feed the whole population and thereby needs support of modern tools and techniques. Microbes perform numerous metabolic functions and improve soil fertility and other physiochemical properties directly or indirectly through nutrient recycling, environmental detoxification, soil health improvement, waste water treatment, etc. The chapter emphasizes on different microbial technologies like biofertilizers, bio-pesticides, PGPR, GMO’s etc. that has great potential in solving major agricultural (crop productivity, plant health protection, and soil health maintenance) and environmental issues (bioremediation of soil and water from organic and inorganic pollutants). It has been postulated that microorganism together with advance biotechnology tools and research can serve as a potential measure in eradication of some of the major global problems in agricultural sustainability, human health and climate change without any serious alteration in environmental variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abubakar MS, Attanda ML (2013) The concept sustainable agriculture: Challenges and prospects. 5th Int Conf Mechatronics, Materials Sci Engg 53: 012001

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Natural Sci 3(2):340–351

    Google Scholar 

  • Ahemad M, Khan MS (2010) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia. J Biosci 4:88–95

    Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant-growth promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Annals Microbio 62:1531–1540

    Article  CAS  Google Scholar 

  • Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372

    Google Scholar 

  • Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91:533–540

    Article  CAS  PubMed  Google Scholar 

  • Alqarawi AA, Allah AA, Hashem EFA (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1):802–810

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Steward A, Hill RA et al (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Araujo ASF, Borges CD, Tsai SM, Cesarz S, Eisenhauer N (2014) Soil bacterial diversity in degraded and restored lands of Northeast Brazil. Antonie Van Leeuwenhoek 106:891–899

    Article  CAS  PubMed  Google Scholar 

  • Arthurs SP, Lacey LA, Rosa FDL (2008) Evaluation of granulovirus (PoGV) and Bacillus thuringiensis subsp. Kurstaki for control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. J Eco Entomolo 101:1540–1546

    Article  Google Scholar 

  • Arya D (2015) Genetically modified foods: benefits and risks. Massachusetts Medical Society Committee on nutrition and physical activity

    Google Scholar 

  • Bagyaraj DJ (2014) Microorganisms in sustainable agriculture. Proc Indian Nat Sci Acad 80(2):357

    Article  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(66):1–10

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting Rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Brklacich M, Bryant C, Smit B (1991) Review and appraisal of concept of sustainable food production systems. Environ Manag 15:1–14

    Article  Google Scholar 

  • Cabot RA, Kühholzer B, Chan A et al (2001) Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Cartwright CD, Lilley AK (2004) Mechanisms for investigating changes in soil ecology due to GMO releases (Defra report EPG 1/5/214) Department for Environment, Food and Rural Affairs

    Google Scholar 

  • Coventry E, Noble R, Mead A, Whipps JM (2002) Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biol Biochem 34:1037–1045

    Article  CAS  Google Scholar 

  • Crosson P (1992) Sustainable agriculture. Resources 106:14–17

    Google Scholar 

  • Dahms HU, Xu Y, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Datta K, Parkhi V, Rai M, Baisakh N, Sahoo G et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278

    Article  Google Scholar 

  • Dona A, Arvanitoyannis IS (2009) Health risks of genetically modified foods. Crit Rev Food Sci Nutr 49(2):164–175

    Article  CAS  PubMed  Google Scholar 

  • Dubock A (2014) The present status of Golden Rice. J Huazhong Agri Univ 33(6):69–84

    Google Scholar 

  • Dutta S (2015) Biopesticides: an eco-friendly approach for pest control. World J Pharm Pharm Sci 4(6):250–265

    Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth promoting rhizobacteria to alleviate salinity stress in plants. PGPR to alleviate salinity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Spinger, New York, pp 73–96

    Chapter  Google Scholar 

  • Elad Y, David RD, Harel MY, Borenshtein M, Silber BKA, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Elmer WH, Pignatello J (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils. Plant Dis 95:960–966

    Article  Google Scholar 

  • Food Safety Department, World Health Organization (WHO) (2005) Modern food biotechnology, human health and development: an evidence based study. Geneva, Switzerland

    Google Scholar 

  • Garcia FP, Menendez E, Rivas R (2015) Role of bacterial bio fertilizers in agriculture and forestry. AIMS Bioeng 2:183–205

    Article  CAS  Google Scholar 

  • Gasson M, Burke D (2001) Scientific perspectives on regulating the safety of genetically modified foods. Nat Rev Genet 2:217–222

    Article  CAS  PubMed  Google Scholar 

  • Gaur V (2010) Biofertilizer–necessity for sustainability. J Adv Dev 1:7–8

    Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guihéneuf F, Khan A, Tran LSP (2016) Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci 7:400. https://doi.org/10.3389/fpls.2016.00400

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbio Biochemist 7:96–102

    Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3(1):186–188

    Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SLS, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18:418–423

    Article  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: Application of mycorrhyzal fungi in sustainable agriculture. Front Ecol Environ 3(10):533–539

    Article  Google Scholar 

  • Higa T (1991) Effective microorganisms: a biotechnology for mankind. In: Parr JF, Hornick SB, Simpson ME (eds) Proceedings of the first international conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, DC, pp 8–14

    Google Scholar 

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. Int Nature Farming Res Centre, Atami, Japan, 16p

    Google Scholar 

  • Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3:137–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynaras colymus). Int J Agri Crop Sci 4:923–929

    Google Scholar 

  • Jeffery S, Verheijen FGA, Van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  • Kamara A, Kamara HS, Kamara MS (2015) Effect of rice straw biochar on soil quality and the early growth and biomass yield of two rice varieties. Agri Sci 6:798–806

    Google Scholar 

  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proc Indian Natn Sci Acad 80(2):379–388

    Article  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Donald LS (ed) Advances in agronomy. Academic Press, San Diego, pp 103–143

    Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev: Perspectives in Agri Vet Sci Nutri Nat Res (056):1–26

    Google Scholar 

  • Koul O (2012) Plant biodiversity as a resource for natural products for insect pest management. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests: key issues for sustainable management. Wiley, Sussex, p 85105

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheswari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Article  Google Scholar 

  • Kumar M, Tomar RS, Lade H, Paul D (2016) Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 32:120. https://doi.org/10.1007/s11274-016-2074-8

    Article  PubMed  CAS  Google Scholar 

  • Kumari P (2016) A study of traditional pest and diseases control methods for sustainable rice cultivation in Sri Lanka Business. IOSR J Manage 18(10):34–36

    Google Scholar 

  • Kuruganti K, Ramanjaneyulu GV (2007) Genetic engineering in Indian Agriculture – an introductory handbook. Centre for Sustainable Agriculture, Secunderabad

    Google Scholar 

  • Lacey LA, Headrick HL, Arthurs SP (2008) Effect of temperature on long-term storage of codling moth granulovirus formulations. J Eco Entomolo 101:288–294

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and Soil 252:151–167

    Article  CAS  Google Scholar 

  • Lee JJ, Park RD, Kim YW, Shim JH, Chae DH, Rim YS, Sohn BK, Kim TH, Kim KY (2004) Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresour Technol 93:21–28

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K bearing minerals by thermophlic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B et al (2010) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR (2006) Life in Earth: the impact of GM plants on soil ecology? Trends Biotechnol 24(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci Rep 6:26710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2016) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8104-0

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 12

    Google Scholar 

  • Martino E, Perotto S, Parsons R (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Masto RE, Chhonkar PK, Singh D, Patra AK (2006) Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol Biochem 38:1577–1582

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmentedmethylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh RB (2013) Physiological and biochemical significance of genetically modified foods: an overview. The Open Nutraceuticals J 6:18–26

    Article  Google Scholar 

  • Mohapatra B, Verma DK, Sen A, Panda BB, Asthir B (2013) Bio-fertilizers – a gateway to sustainable agriculture. Popular Kheti 1(4):97–106

    Google Scholar 

  • Mosttafiz S, Rahman M, Rahman M (2012a) Biotechnology: role of microbes in sustainable agriculture and environmental health. The. Internet J Microbiol 10(1):1–6

    Google Scholar 

  • Mosttafiz S, Rahman M, Rahman M (2012b) Biotechnology: role of microbes in sustainable agriculture and environmental health. The Internet J Microbio 10(1):1–7

    Google Scholar 

  • Nawaz M, Mabubu JI, Hua H (2016) Current status and advancement of biopesticides: microbial and botanical pesticides. J Entomolo Zoo Stud 4(2):241246

    Google Scholar 

  • Pal S, Singh HB, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Eco-friendly Agri 10(2):101–113

    Google Scholar 

  • Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Forum Nutr 1:168–177

    CAS  Google Scholar 

  • Parr JF, Hornick SB, Kaufman DD (1994) Use of microbial Inoculants and organic fertilizers in agricultural production. Proc Int Semi Use of Microbial and Organic Fertilizers in Agri Production Taipei, Taiwan

    Google Scholar 

  • Peng S, Guo T, Liu G (2013) The effects of arbuscular mycorrhizal hyphalnetworks on soil aggregations of purple soil in southwest China. Soil Biol Biochem 57:411–417

    Article  CAS  Google Scholar 

  • Pineda S, Alatorre R, Schneider M, Martinez A (2007) Pathogenicity of two entomopathogenic fungi on Trialeurodes vaporariorum and field evaluation of a Paecilomyces fumosoroseus isolate. Southwestern Entomolo 32:43–52

    Article  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Nat Acad USA 109(31):12302–12308

    Article  CAS  Google Scholar 

  • Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sustain Energy Rev 42:1055–1064

    Article  CAS  Google Scholar 

  • Quilliam RS, Glanville HC, Wade SC, Jones DL (2013) Life in the ‘charosphere’ does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol Biochem 65:287–293

    Article  CAS  Google Scholar 

  • Rai M, Datta K, Baisakh N, Abrigo E, Oliva N, Datta SK (2003) Agronomic performance of Golden indica rice (cv. IR64). Rice Genet Newsl 20:30–33

    Google Scholar 

  • Rashid MI, Mujawar LM, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Yousaf S, Rajer FU (2016) Plant growth promoting activity of volatile organic compounds produced by bio-control strains. Sci Letters 4(1):40–43

    Google Scholar 

  • Royal Society (1998) Genetically modified plants for food use. Royal Society, London

    Google Scholar 

  • Saha JK, Panwar N, Singh MV (2010) An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag 30:192–201

    Article  CAS  PubMed  Google Scholar 

  • Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria – as potential biofertilizers. CIBTech J Microbiology ISSN:2319–3867

    Google Scholar 

  • Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sarkar S, Pal S, Chanda S (2016) Optimization of a vegetable waste composting process with a significant thermophilic phase. Int Conf Solid Waste Manag, Proc Env Sci 35:435–440

    CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Env Sci Dev 3(1):73

    Article  Google Scholar 

  • Schäfer T, Adams T (2015) The importance of microbiology in sustainable agriculture. In: Springer International Publication (ed) Principles of plant-microbe interactions. Lugtenberg, Switzerland

    Google Scholar 

  • Seneviratne G, Kulasooriya SA (2013) Reinstating soil microbial diversity in agroecosystems: the need of the hour for sustainability and health. Agric Ecosyst Environ 164:181–182

    Article  Google Scholar 

  • Sengupta A, Gunri SK (2015) Microbial intervention in agriculture: an overview. Afr J Microbiol Res 9(18):1215–1226

    Article  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Patterson Fife J (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38:124–133

    Article  Google Scholar 

  • Sharma A, Saha TN, Arora A, Shah R, Nain L (2017) Efficient microorganism compost benefits plant growth and improves soil health in Calendula and Marigold. Horticul Plant J 3(2):67–72

    Article  Google Scholar 

  • Sharma R, Khokhar MK, Jat RL, Khandelwal SK (2012) Role of algae and cyanobacteria in sustainable agriculture system. Wudpecker J Agri Res 1(9):381–388

    Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Article  CAS  Google Scholar 

  • Silva-Stenico ME, Silva CSP, Lorenzi AS, Shishido TK, Etchegaray A, Lira SP et al (2011) Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol Res 166:161–175

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010c) Characterization and evaluation of biochars for their application as a soil amendment. Australian J Soil Res 48:516–525

    Article  CAS  Google Scholar 

  • Singh JS (2014) Cyanobacteria: a vital bio-agent in eco-restoration of degraded lands and sustainable agriculture. Climate Change Env Sustain 2(2):133–137

    Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529. https://doi.org/10.3389/fmicb.2016.00529

    PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011a) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh JS, Pandey VC, Singh DP, Singh RP (2010a) Influence of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed paddy field. Agric Ecosyst Environ 139:74–79

    Article  Google Scholar 

  • Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of Cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front Microbiol 8:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SR, Singh U, Chaubey AK, Bhat M (2010b) Mycorrhizal fungi for sustainable agriculture – a review. Agric Rev 31(2):93–104

    Google Scholar 

  • Singh JS, Singh DP, Dixit S (2011b) Cyanobacteria: an agent of heavy metal removal. In: Maheshwari DK, Dubey RC (eds) Bioremediation of pollutants. IK International Publisher Co, New Delhi, pp 223–243

    Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Donald LS (ed) Advances in agronomy. Academic Press, San Diego, pp 47–82

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sudakin DL (2003) Biopesticides. Toxicol Rev 22(2):83–90

    Article  PubMed  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak MA (2009) Golden Rice is an effective source of Vitamin A1–4. Am J Clin Nutr 89:1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiquia SM, Tam NYF (2000) Co-composting of spent pig litter and sludge with forced-aeration. Bioresour Technol 72:1–7

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Combaret CP (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4(356):1–19

    Google Scholar 

  • Van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseenmajority: soil microbes as drivers of plant diversity and productivity interrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  PubMed  Google Scholar 

  • Vílchez C, Garbayo I, Lobato MV, Vega JM (1997) Microalgae- mediated chemicals production and wastes removal. Enzyme Microb Technol 20:562–572

    Article  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Voraquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242

    Article  Google Scholar 

  • Xie J, Shi H, Du Z, Wang T, Liu X, Chen S (2016) Comparative genomic and functional analysis reveals conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6:21329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakry FAA, Shamsuddin ZH, Rahim KA, Zakaria ZZ, Rahim AA (2012) Inoculation of Bacillus sphaerichus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes Env 27(3):257–262

    Article  Google Scholar 

  • Zhu N (2006) Composting of high moisture content swine manure with corncob in pilot scale aerated static bin system. Bioresour Technol 97:1870–1875

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gouda, S., Nayak, S., Bishwakarma, S., Kerry, R.G., Das, G., Patra, J.K. (2017). Role of Microbial Technology in Agricultural Sustainability. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_8

Download citation

Publish with us

Policies and ethics