Abstract
The methods of quantum field theory are widely used in condensed matter physics. In particular, the concept of an effective action was proven useful when studying low temperature and long distance behavior of condensed matter systems. Often the degrees of freedom which appear due to spontaneous symmetry breaking or an emergent gauge symmetry, have non-trivial topology. In those cases, the terms in the effective action describing low energy degrees of freedom can be metric independent (topological). We consider a few examples of topological terms of different types and discuss some of their consequences. We will also discuss the origin of these terms and calculate effective actions for several fermionic models. In this approach, topological terms appear as phases of fermionic determinants and represent quantum anomalies of fermionic models. In addition to the wide use of topological terms in high energy physics, they appeared to be useful in studies of charge and spin density waves, Quantum Hall Effect, spin chains, frustrated magnets, topological insulators and superconductors, and some models of high-temperature superconductivity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
[1] R. B. Laughlin and D. Pines, Proceedings of the National Academy of Sciences of the United States of America 97, 28 (2000).
[2] P. W. Anderson et al, Science, 177(4047), 393 (1972).
[3] M. E. Peskin and D. V. Schroeder, Quantum field theory (The Advanced Book Program, Perseus Books Reading, Massachusetts, 1995).
[4] M. Gell-Mann and M. Lévy, Il Nuovo Cimento, 16, 705 (1960).
[5] S. L. Adler and R. F. Dashen, Current algebras and applications to particle physics, volume 30. (Benjamin, 1968).
[6] A. M. Polyakov, Gauge Fields and Strings (CRC, September 1987).
[7] N. D. Mermin, Rev. Mod. Phys., 51, 591 (1979).
[8] A. Altland and B. D. Simons, Condensed matter field theory (Cambridge University Press, 2010).
[9] E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).
[10] A. G. Abanov and P. B. Wiegmann, Nucl. Phys. B, 570, 685 (2000).
[11] A. G. Abanov, Phys. Lett. B, 492, 321 (2000).
[12] F. Wilczek and A. Shapere, Geometric phases in physics, volume 5. (World Scientific, 1989).
[13] S. Treiman and R. Jackiw, Current algebra and anomalies (Princeton University Press, 2014).
[14] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry - methods and applications: Part II: The geometry and topology of manifolds, volume 104 (Springer Science & Business Media, 2012).
[15] M. Nakahara, Geometry, topology and physics (CRC Press, 2003).
[16] M. Monastyrsky, Topology of gauge fields and condensed matter (Springer Science & Business Media, 2013).
[17] V. I. Arnold, Mathematical methods of classical mechanics ( Graduate Texts in Mathematics, 60:229–234, 1991).
[18] M. Stone and P. Goldbart, Mathematics for physics: a guided tour for graduate students (Cambridge University Press, 2009).
[19] L. D. Landau and E. M. Lifshitz, Mechanics (Course of theoretical physics, Vol 1), pages 84–93, 1976.
[20] J. Wess and B. Zumino, Phys. Lett. B, 37, 95 (1971).
[21] E. Witten, Nucl. Phys. B, 223, 422 (1983).
[22] S. P. Novikov, Russian mathematical surveys, 37, 1 (1982).
[23] E. Witten, Nucl. Phys. B, 223, 433 (1983).
[24] M. Stone, Phys. Rev. D, 33, 1191 (1986).
[25] E. Witten, Phys. Lett. B, 117, 324 (1982).
[26] K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies. (Number 122. Oxford University Press on Demand, 2004).
[27] I. K. Affleck, Field theory methods and quantum critical phenomena, Technical report, PRE-31353, 1988.
[28] A. M. Polyakov, Phys. Lett. B, 59, 79 (1975).
[29] P. B. Wiegmann, Phys. Lett. B, 152, 209 (1985).
[30] F. D. M. Haldane, Phys. Rev. Lett., 50, 1153 (1983).
[31] F. D. M. Haldane, Phys. Lett. A, 93, 464 (1983).
[32] H. Bethe, Zeitschrift für Physik,71, 205 (1931).
[33] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett., 51, 1915 (1983).
[34] D. E. Khmel’nitskii, JETP lett, 38, 552 (1983).
[35] I. Affleck and F. D. M. Haldane, Phys. Rev. B, 36, 5291 (1987).
[36]M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P. Renard, Phys. Rev. Lett., 65, 3181 (1990).
[37] M. Kenzelmann, G. Xu, I. A. Zaliznyak, C. Broholm, J. F. DiTusa, G. Aeppli, T. Ito, K. Oka, and H. Takagi, Phys. Rev. Lett. 90, 087202 (2003); Erratum Phys. Rev. Lett. 90, 109902 (2003).
[38] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett., 59, 799 (1987).
[39] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, In Condensed Matter Physics and Exactly Soluble Models, pages 253–304. Springer, 1988.
[40] A. Gromov, G. Y. Cho, Y. You, A. G. Abanov, and E. Fradkin, Phys. Rev. Lett., 114, 016805 (2015).
[41] S. Ryu, J. E. Moore, and A. W. W. Ludwig, Phys. Rev. B, 85, 045104 (2012).
[42] K. Itô, Encyclopedic dictionary of mathematics, volume 1. (MIT press, 1993).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd. and Hindustan Book Agency
About this chapter
Cite this chapter
Abanov, A. (2017). Topology, geometry and quantum interference in condensed matter physics. In: Bhattacharjee, S., Mj, M., Bandyopadhyay, A. (eds) Topology and Condensed Matter Physics. Texts and Readings in Physical Sciences, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-10-6841-6_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-6841-6_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6840-9
Online ISBN: 978-981-10-6841-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)