Skip to main content

Topology, geometry and quantum interference in condensed matter physics

  • Chapter
  • First Online:
Topology and Condensed Matter Physics

Part of the book series: Texts and Readings in Physical Sciences ((TRiPS,volume 19))

Abstract

The methods of quantum field theory are widely used in condensed matter physics. In particular, the concept of an effective action was proven useful when studying low temperature and long distance behavior of condensed matter systems. Often the degrees of freedom which appear due to spontaneous symmetry breaking or an emergent gauge symmetry, have non-trivial topology. In those cases, the terms in the effective action describing low energy degrees of freedom can be metric independent (topological). We consider a few examples of topological terms of different types and discuss some of their consequences. We will also discuss the origin of these terms and calculate effective actions for several fermionic models. In this approach, topological terms appear as phases of fermionic determinants and represent quantum anomalies of fermionic models. In addition to the wide use of topological terms in high energy physics, they appeared to be useful in studies of charge and spin density waves, Quantum Hall Effect, spin chains, frustrated magnets, topological insulators and superconductors, and some models of high-temperature superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • [1] R. B. Laughlin and D. Pines, Proceedings of the National Academy of Sciences of the United States of America 97, 28 (2000).

    Google Scholar 

  • [2] P. W. Anderson et al, Science, 177(4047), 393 (1972).

    Google Scholar 

  • [3] M. E. Peskin and D. V. Schroeder, Quantum field theory (The Advanced Book Program, Perseus Books Reading, Massachusetts, 1995).

    Google Scholar 

  • [4] M. Gell-Mann and M. Lévy, Il Nuovo Cimento, 16, 705 (1960).

    Google Scholar 

  • [5] S. L. Adler and R. F. Dashen, Current algebras and applications to particle physics, volume 30. (Benjamin, 1968).

    Google Scholar 

  • [6] A. M. Polyakov, Gauge Fields and Strings (CRC, September 1987).

    Google Scholar 

  • [7] N. D. Mermin, Rev. Mod. Phys., 51, 591 (1979).

    Google Scholar 

  • [8] A. Altland and B. D. Simons, Condensed matter field theory (Cambridge University Press, 2010).

    Google Scholar 

  • [9] E. Fradkin, Field theories of condensed matter physics (Cambridge University Press, 2013).

    Google Scholar 

  • [10] A. G. Abanov and P. B. Wiegmann, Nucl. Phys. B, 570, 685 (2000).

    Google Scholar 

  • [11] A. G. Abanov, Phys. Lett. B, 492, 321 (2000).

    Google Scholar 

  • [12] F. Wilczek and A. Shapere, Geometric phases in physics, volume 5. (World Scientific, 1989).

    Google Scholar 

  • [13] S. Treiman and R. Jackiw, Current algebra and anomalies (Princeton University Press, 2014).

    Google Scholar 

  • [14] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern geometry - methods and applications: Part II: The geometry and topology of manifolds, volume 104 (Springer Science & Business Media, 2012).

    Google Scholar 

  • [15] M. Nakahara, Geometry, topology and physics (CRC Press, 2003).

    Google Scholar 

  • [16] M. Monastyrsky, Topology of gauge fields and condensed matter (Springer Science & Business Media, 2013).

    Google Scholar 

  • [17] V. I. Arnold, Mathematical methods of classical mechanics ( Graduate Texts in Mathematics, 60:229–234, 1991).

    Google Scholar 

  • [18] M. Stone and P. Goldbart, Mathematics for physics: a guided tour for graduate students (Cambridge University Press, 2009).

    Google Scholar 

  • [19] L. D. Landau and E. M. Lifshitz, Mechanics (Course of theoretical physics, Vol 1), pages 84–93, 1976.

    Google Scholar 

  • [20] J. Wess and B. Zumino, Phys. Lett. B, 37, 95 (1971).

    Google Scholar 

  • [21] E. Witten, Nucl. Phys. B, 223, 422 (1983).

    Google Scholar 

  • [22] S. P. Novikov, Russian mathematical surveys, 37, 1 (1982).

    Google Scholar 

  • [23] E. Witten, Nucl. Phys. B, 223, 433 (1983).

    Google Scholar 

  • [24] M. Stone, Phys. Rev. D, 33, 1191 (1986).

    Google Scholar 

  • [25] E. Witten, Phys. Lett. B, 117, 324 (1982).

    Google Scholar 

  • [26] K. Fujikawa and H. Suzuki, Path integrals and quantum anomalies. (Number 122. Oxford University Press on Demand, 2004).

    Google Scholar 

  • [27] I. K. Affleck, Field theory methods and quantum critical phenomena, Technical report, PRE-31353, 1988.

    Google Scholar 

  • [28] A. M. Polyakov, Phys. Lett. B, 59, 79 (1975).

    Google Scholar 

  • [29] P. B. Wiegmann, Phys. Lett. B, 152, 209 (1985).

    Google Scholar 

  • [30] F. D. M. Haldane, Phys. Rev. Lett., 50, 1153 (1983).

    Google Scholar 

  • [31] F. D. M. Haldane, Phys. Lett. A, 93, 464 (1983).

    Google Scholar 

  • [32] H. Bethe, Zeitschrift für Physik,71, 205 (1931).

    Google Scholar 

  • [33] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett., 51, 1915 (1983).

    Google Scholar 

  • [34] D. E. Khmel’nitskii, JETP lett, 38, 552 (1983).

    Google Scholar 

  • [35] I. Affleck and F. D. M. Haldane, Phys. Rev. B, 36, 5291 (1987).

    Google Scholar 

  • [36]M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P. Renard, Phys. Rev. Lett., 65, 3181 (1990).

    Google Scholar 

  • [37] M. Kenzelmann, G. Xu, I. A. Zaliznyak, C. Broholm, J. F. DiTusa, G. Aeppli, T. Ito, K. Oka, and H. Takagi, Phys. Rev. Lett. 90, 087202 (2003); Erratum Phys. Rev. Lett. 90, 109902 (2003).

    Google Scholar 

  • [38] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett., 59, 799 (1987).

    Google Scholar 

  • [39] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, In Condensed Matter Physics and Exactly Soluble Models, pages 253–304. Springer, 1988.

    Google Scholar 

  • [40] A. Gromov, G. Y. Cho, Y. You, A. G. Abanov, and E. Fradkin, Phys. Rev. Lett., 114, 016805 (2015).

    Google Scholar 

  • [41] S. Ryu, J. E. Moore, and A. W. W. Ludwig, Phys. Rev. B, 85, 045104 (2012).

    Google Scholar 

  • [42] K. Itô, Encyclopedic dictionary of mathematics, volume 1. (MIT press, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Abanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Hindustan Book Agency

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abanov, A. (2017). Topology, geometry and quantum interference in condensed matter physics. In: Bhattacharjee, S., Mj, M., Bandyopadhyay, A. (eds) Topology and Condensed Matter Physics. Texts and Readings in Physical Sciences, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-10-6841-6_12

Download citation

Publish with us

Policies and ethics