Part of the Springer Theses book series (Springer Theses)


In Fig. 2.1, the numerical methods used in this thesis are outlined.


  1. 1.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2017).
  2. 2.
    Floryan, J.M., Saric, W.S.: Stability of Görtler vortices in boundary layers. AIAA J. 20(3), 316–324 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ren, J., Fu, S.: Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China Phys. Mech. Astron. 57(6), 1178–1193 (2014). CrossRefGoogle Scholar
  4. 4.
    Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826–837 (1996).,
  5. 5.
    Li, F., Malik, M.R.: On the nature of pse approximation. Theor. Comput. Fluid Dyn. 8(4), 253–273 (1996).,
  6. 6.
    Andersson, P., Henningson, D., Hanifi, A.: On a stabilization procedure for the parabolic stability equations. J. Eng. Math. 33(3), 311–332 (1998).,
  7. 7.
    Bertolotti, F.P., Herbert, T., Spalart, P.R.: Linear and nonlinear stability of the blasius boundary layer. J. Fluid Mech. 242, 441–474 (1992).,
  8. 8.
    Chang, C.L., Malik, M., Erlebacher, G., Hussaini, M.: Compressible stability of growing boundary layers using parabolized stability equations. In: 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference (1991). AIAA-1991-1636Google Scholar
  9. 9.
    Herbert, T.: Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245–283 (1997).,

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations