Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 660 Accesses

Abstract

The coming era of personalized cancer treatment, which requires the exact diagnosis of individual patients, is presenting micro/nano automation technology with unprecedented opportunities. Atomic force microscopy (AFM)-based nanorobotics is capable of detecting multiple physical properties of single cells and single molecules in their native states, considerably complementing traditional biochemical assays. The unique information obtained by AFM nanorobotics provides novel insights into cellular and molecular behaviors and facilitates developing novel label-free methods for drug evaluation and efficacy prediction, which will have potential impacts on personalized medicine and innovative engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li M, Liu L, Xi N et al (2017) Applications of micro/nano automation technology in detecting cancer cells for personalized medicine. IEEE Trans Nanotechnol 16:217–229

    Article  ADS  Google Scholar 

  2. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  Google Scholar 

  3. Bray F, Jemal A, Grey N et al (2012) Global cancer transitions according to human development index(2008–2030): a population-based study. Lancet Oncol 13:790–801

    Article  Google Scholar 

  4. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  Google Scholar 

  5. DeVita VT, Rosenberg SA (2012) Two hundred years of cancer research. N Engl J Med 366:2207–2214

    Article  Google Scholar 

  6. Schiffman M, Castle PE, Jeronimo J et al (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907

    Article  Google Scholar 

  7. Varmus H (2006) The new era in cancer research. Science 312:1162–1165

    Article  ADS  Google Scholar 

  8. Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

    Article  Google Scholar 

  9. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  Google Scholar 

  10. Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin,s lymphoma. N Engl J Med 359:613–626

    Article  Google Scholar 

  11. Cartron G, Watier H, Golay J et al (2004) From the bench to the bedside: ways to improve rituximab efficacy. Blood 104:2635–2642

    Article  Google Scholar 

  12. Li M, Liu L, Xi N et al (2016) Applications of atomic force microscopy in exploring drug actions in lymphoma-targeted therapy at the nanoscale. Bionanoscience 6:22–32

    Article  ADS  Google Scholar 

  13. Glennie MJ, French RR, Cragg MS et al (2007) Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44:3823–3837

    Article  Google Scholar 

  14. Lim SH, Beers SA, French RR et al (2010) Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 95:135–143

    Article  Google Scholar 

  15. Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med 366:2008–2016

    Article  Google Scholar 

  16. Alduaij W, Illidge TM (2011) The future of anti-CD20 monoclonal antibodies: are we making progress. Blood 117:2993–3001

    Article  Google Scholar 

  17. Rezvani AR, Maloney DG (2011) Rituximab resistance. Best Pract Res Clin Haematol 24:203–216

    Article  Google Scholar 

  18. Oflazoglu E, Audoly LP (2010) Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. mAbs 2: 14–19

    Google Scholar 

  19. Xie XS, Yu J, Wang WY (2006) Living cells as test tubes. Science 312:228–230

    Article  ADS  Google Scholar 

  20. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference. Cell 141:559–563

    Article  Google Scholar 

  21. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  ADS  Google Scholar 

  22. Burrell RA, McGranahan N, Bartek J et al (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345

    Article  ADS  Google Scholar 

  23. Bedard PL, Hansen AR, Ratain MJ et al (2013) Tumour heterogeneity in the clinic. Nature 501:355–364

    Article  ADS  Google Scholar 

  24. Humburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363:301–304

    Article  Google Scholar 

  25. Pelkmans L (2012) Using cell-to-cell variability—a new era in molecular biology. Science 336:425–426

    Article  ADS  Google Scholar 

  26. Wilson EB (1925) The cell in development and heredity. Macmillan, New York

    Google Scholar 

  27. Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19:R762–R771

    Article  Google Scholar 

  28. https://www.britannica.com/science/sickle-cell-anemia

  29. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12:196–209

    Google Scholar 

  30. Lyer S, Gaikwad RM, Subba-Rao V et al (2009) Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol 4:389–393

    Article  ADS  Google Scholar 

  31. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  ADS  Google Scholar 

  32. Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  Google Scholar 

  33. Li QS, Lee GYH, Ong CN et al (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613

    Article  Google Scholar 

  34. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438

    Article  MathSciNet  Google Scholar 

  35. Cross SE, Jin YS, Rao JY et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  ADS  Google Scholar 

  36. Plodinec M, Loparic M, Monnier C et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765

    Article  ADS  Google Scholar 

  37. Reichert JM (2010) Antibodies to watch in 2010. mAbs 2: 84–100

    Google Scholar 

  38. Reichert JM (2013) Antibodies to watch in 2013. mAbs 5: 513–517

    Google Scholar 

  39. Mow VC, Guilak F, Tran-Son-Tay R et al (1994) Cell mechanics and cellular engineering. Springer, New York

    Book  Google Scholar 

  40. Puttern EGV, Akbulut D, Bertolotti J et al (2011) Scattering lens resolves sub-100 nm structures with visible light. Phys Rev Lett 106:193905

    Article  ADS  Google Scholar 

  41. Oesterhelt F, Oesterhelt D, Pfeiffer M et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146

    Article  ADS  Google Scholar 

  42. Mulvey T (1989) The electron microscope: the British contribution. J Microsc 155:327–338

    Article  Google Scholar 

  43. Smith DJ (2008) Ultimate resolution in the electron microscope. Mater Today 11:30–38

    Article  Google Scholar 

  44. Ahmad MR, Nakajima M, Kojima S et al (2010) Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM. IEEE Trans Nanobiosci 9:12–23

    Article  Google Scholar 

  45. Kirk SE, Skepper JN, Donald AM (2009) Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233:205–224

    Article  MathSciNet  Google Scholar 

  46. Muscariello L, Rosso F, Marino G et al (2005) A critical overview of ESEM applications in the biological field. J Cell Physiol 205:328–334

    Article  Google Scholar 

  47. Toth M, Lobo CJ, Ralph W et al (2007) Nanostructure fabrication by ultra-high-resolution environmental scanning electron microscopy. Nano Lett 7:525–530

    Article  ADS  Google Scholar 

  48. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  49. Li M, Dang D, Liu L et al (2017) Imaging and force recognition of single molecular behaviors using atomic force microscopy. Sensors 17:200

    Article  Google Scholar 

  50. Gross L, Mohn F, Moll N et al (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  ADS  Google Scholar 

  51. Dupres V, Alsteens D, Andre G et al (2009) Fishing single molecules on live cells. Nano Today 4:262–268

    Article  Google Scholar 

  52. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–774

    Article  Google Scholar 

  53. Mashanov GI, Tacon D, Knight AE et al (2003) Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29:142–152

    Article  Google Scholar 

  54. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34:361–368

    Article  Google Scholar 

  55. Jaiswal JK, Simon SM (2007) Imaging single events at the cell membrane. Nat Chem Biol 3:92–98

    Article  Google Scholar 

  56. Zanten TSV, Lopez-Bosque MJ, Garcia-Parajo MF (2010) Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. Small 6:270–275

    Article  Google Scholar 

  57. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  Google Scholar 

  58. Ritort F (2006) Single-molecule experiments in biological physics: methods and applications. J Phys: Condens Matter 18:R531–R583

    ADS  Google Scholar 

  59. Michalet X, Pinard FF, Bentolila LA (2005) Quantum dots for live cells, in vivo imaging and diagnostics. Science 307:538–544

    Article  ADS  Google Scholar 

  60. Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Article  ADS  Google Scholar 

  61. Jain A, Liu R, Ramani B et al (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473:484–488

    Article  ADS  Google Scholar 

  62. Lagerholm BC, Wang M, Ernst LA et al (2004) Multicolor coding of cells with cationic peptide coated quantum dots. Nano Lett 4:2019–2022

    Article  ADS  Google Scholar 

  63. Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47:7039–7050

    Article  Google Scholar 

  64. Stewart MP, Toyoda Y, Hyman AA et al (2011) Force probing cell shape changes to molecular resolution. Trends Biochem Sci 36:444–450

    Article  Google Scholar 

  65. Kedrov A, Janovjak H, Sapra KT et al (2007) Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Ann Rev Biophys Biomol Struct 36:233–260

    Article  Google Scholar 

  66. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  Google Scholar 

  67. Walter NG, Huang CY, Manzo AJ et al (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475–489

    Article  Google Scholar 

  68. Merkel R, Nassoy P, Leung A et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  ADS  Google Scholar 

  69. Moffitt JR, Chemla YR, Smith SB et al (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    Article  Google Scholar 

  70. Jing P, Wu J, Liu GW et al (2016) Photonic crystal optical tweezers with high efficiency for live biological samples and viability characterization. Sci Rep 6:19924

    Article  ADS  Google Scholar 

  71. Cecconi C, Shank EA, Bustamante C et al (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    Article  ADS  Google Scholar 

  72. Strick TR, Croquette V, Bensimon D (2000) Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404:901–904

    Article  ADS  Google Scholar 

  73. Le S, Liu R, Lim CT et al (2016) Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods 94:13–18

    Article  Google Scholar 

  74. Liu B, Chen W, Evavold BD et al (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–368

    Article  Google Scholar 

  75. Dufrene YF, Ando T, Garcia R et al (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12:295–307

    Article  ADS  Google Scholar 

  76. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  Google Scholar 

  77. Senapati S, Lindsay S (2016) Recent progress in molecular recognition imaging using atomic force microscopy. Acc Chem Res 49:503–510

    Article  Google Scholar 

  78. Muller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3:261–269

    Article  ADS  Google Scholar 

  79. Feynman RP (1960) There’s plenty of room at the bottom. Caltech’s Eng Sci 23:22–36

    Google Scholar 

  80. Roco MC (2011) The long view of nanotechnology development: the national nanotechnology initiative at 10 years. J Nanopart Res 13:427–445

    Article  Google Scholar 

  81. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  ADS  Google Scholar 

  82. Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1:3–5

    Article  ADS  Google Scholar 

  83. Fukuda T, Arai F, Nakajima M (2013) Micro-nanorobotic manipulation systems and their applications. Springer, New York

    Book  Google Scholar 

  84. Roco MC (2005) Environmentally responsible of nanotechnology. Environ Sci Technol 39:106–112

    Article  ADS  Google Scholar 

  85. Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592

    Article  ADS  Google Scholar 

  86. Bai C (2005) Ascent of nanoscience in China. Science 309:61–63

    Article  Google Scholar 

  87. Li M, Liu L, Xi N et al (2015) Biological applications of a nanomanipulator based on AFM: in situ visualization and quantification of cellular behaviors at the single-molecule level. IEEE Nanotechnol Mag 9:25–35

    Article  Google Scholar 

  88. Abbott JJ, Nagy Z, Beyeler F et al (2007) Robotics in the small part I: microrobotics. IEEE Robot Autom Mag 14:92–103

    Article  Google Scholar 

  89. Dong LX, Nelson BJ (2007) Robotics in the small part II: nanorobotics. IEEE Robot Autom Mag 14:111–121

    Article  Google Scholar 

  90. Freitas RA (2005) What is nanomedicine. Nanomedicine 1:2–9

    Article  Google Scholar 

  91. Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4:127–138

    Article  Google Scholar 

  92. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Ann Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  93. Lenaghan SC, Wang Y, Xi N et al (2013) Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans Biomed Eng 60:667–673

    Article  Google Scholar 

  94. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  ADS  Google Scholar 

  95. Wang J, Gao W (2012) Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6:5745–5751

    Article  Google Scholar 

  96. Sitti M (2007) Microscale and nanoscale robotics systems. IEEE Robot Autom Mag 14:53–60

    Article  Google Scholar 

  97. Onal CD, Sitti M (2010) Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope. IEEE Trans Nanotechnol 9:46–54

    Article  ADS  Google Scholar 

  98. Xie H, Regnier S (2012) High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans Nanotechnol 11:21–33

    Article  ADS  Google Scholar 

  99. Li M, Liu L, Xi N et al (2013) Progress of AFM single-cell and single-molecule morphology imaging. Chin Sci Bull 58:3177–3182

    Article  Google Scholar 

  100. Guillaume-Gentil O, Potthoff E, Ossola D et al (2014) Force-controlled manipulation of single cells: from AFM to fluidFM. Trends Biotechnol 32:381–388

    Article  Google Scholar 

  101. Yang R, Song B, Sun Z et al (2015) Cellular level robotic surgery: nanodissection of intermediate filaments in live keratinocytes. Nanomedicine 11:137–145

    Article  Google Scholar 

  102. Li M, Liu L, Xi N et al (2014) Nanoscale imaging and morphological analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells. Langmuir 30:1609–1621

    Article  Google Scholar 

  103. Li M, Xiao X, Liu L et al (2016) Nanoscale quantifying the effects of targeted drug on chemotherapy in lymphoma treatment using atomic force microscopy. IEEE Trans Biomed Eng 63:2187–2199

    Article  ADS  Google Scholar 

  104. Li G, Xi N, Yu M et al (2004) Development of augmented reality system for AFM-based nanomanipulation. IEEE-ASME Trans Mechatron 9:358–365

    Article  Google Scholar 

  105. Liu L, Luo Y, Xi N et al (2008) Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations. IEEE-ASME Trans Mechatron 13:76–85

    Article  Google Scholar 

  106. Hou J, Liu L, Wang Z et al (2013) AFM-based robotic nano-hand for stable manipulation at nanoscale. IEEE Trans Autom Sci Eng 10:285–295

    Article  Google Scholar 

  107. Liu L (2009) Study on task space oriented real-time feedback in robotic nanomanipulation. Ph.D. thesis of University of Chinese Academy of Sciences

    Google Scholar 

  108. Li G, Xi N, Wang DH (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine 1:31–40

    Article  Google Scholar 

  109. Hockfield S (2009) The next innovation revolution. Science 323:1147

    Article  Google Scholar 

  110. Taniguchi Y, Choi PJ, Li GW et al (2010) Quantifying E.coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  ADS  Google Scholar 

  111. Mari SA, Pessoa J, Altieri S et al (2011) Gating of the mlotik1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc Natl Acad Sci USA 108:20802–20807

    Article  ADS  Google Scholar 

  112. Uchihashi T, Iino R, Ando T et al (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758

    Article  ADS  Google Scholar 

  113. Kodera N, Yamamoto D, Ishikawa R et al (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76

    Article  ADS  Google Scholar 

  114. Sitti M (2004) Micro- and nano-scale robotics. In: Proceeding of the 2004 American Control Conference, Boston, 2004

    Google Scholar 

  115. Hill C, Amodeo A, Joseph JV et al (2008) Nano- and microrobotics: how far is the reality. Expert Rev Anticancer Ther 8:1891–1897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, M. (2018). Introduction to Atomic Force Microscopy-Based Nanorobotics for Biomedical Applications. In: Investigations of Cellular and Molecular Biophysical Properties by Atomic Force Microscopy Nanorobotics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6829-4_1

Download citation

Publish with us

Policies and ethics