Skip to main content

Imaging Membranes by High-Resolution Atomic Force Microscopy

  • Chapter
  • First Online:
Membrane Biophysics
  • 1855 Accesses

Abstract

The cell membrane (also named plasma membrane) encloses the cell, defines its boundaries, and maintains the essential differences between the cytosol and the extracellular. The atomic force microscope (AFM) is a powerful tool for imaging the structural features of cell membrane in their native state. High-resolution imaging of morphological details demonstrated that the membrane proteins are mainly located on the cytoplasmic side of membranes, and the ectoplasmic side membrane is smooth. As a result, novel models of cell membrane have been proposed. The new progress regarding membrane structure using in situ AFM is discussed here. These AFM-based nanoscale analyses offer exciting opportunities in biophysics and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  Google Scholar 

  2. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16(6):R65–R92

    Article  CAS  Google Scholar 

  3. Muller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269

    Article  Google Scholar 

  4. Goksu EI, Vanegas JM, Blanchette CD et al (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788(1):254–266

    Article  CAS  Google Scholar 

  5. Whited AM, Park PSH (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838(1):56–68

    Article  Google Scholar 

  6. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6–8):197–301

    Article  CAS  Google Scholar 

  7. Han WH, Lindsay SM, Jing TW (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69(26):4111–4113

    Article  CAS  Google Scholar 

  8. Ge GL, Han D, Lin DY et al (2007) MAC mode atomic force microscopy studies of living samples, ranging from cells to fresh tissue. Ultramicroscopy 107(4–5):299–307

    Article  CAS  Google Scholar 

  9. Hansma PK, Cleveland JP, Radmacher M et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740

    Article  CAS  Google Scholar 

  10. Basak S, Raman A (2007) Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl Phys Lett 91(6):064107

    Google Scholar 

  11. Allison DP, Mortensen NP, Sullivan CJ et al (2010) Atomic force microscopy of biological samples. Wiley Interdisc Rev Nanomed Nanobiotechnology 2(6):618–634

    Article  Google Scholar 

  12. Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21(8):461–469

    Article  Google Scholar 

  13. Heinisch JJ, Lipke PN, Beaussart A et al (2012) Atomic force microscopy—looking at mechanosensors on the cell surface. J Cell Sci 125(18):4189–4195

    Article  CAS  Google Scholar 

  14. Dufrene YF, Ando T, Garcia R et al (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4):295–307

    Article  CAS  Google Scholar 

  15. Stroh C, Wang H, Bash R et al (2004) Single-molecule recognition imaging-microscopy. Proc Natl Acad Sci USA 101(34):12503–12507

    Article  CAS  Google Scholar 

  16. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355

    Article  CAS  Google Scholar 

  17. Dufrene YF, Martinez-Martin D, Medalsy I et al (2013) Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 10(9):847–854

    Article  CAS  Google Scholar 

  18. Shan YP, Wang HD (2015) The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 44(11):3617–3638

    Article  CAS  Google Scholar 

  19. Wang HD, Bash R, Yodh JG et al (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83(6):3619–3625

    Article  CAS  Google Scholar 

  20. Lohr D, Bash R, Wang H et al (2007) Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods 41(3):333–341

    Article  CAS  Google Scholar 

  21. Wang H, Bash R, Yodh JG et al (2004) Using atomic force microscopy to study nucleosome remodeling on individual nucleosomal arrays in situ. Biophys J 87(3):1964–1971

    Article  CAS  Google Scholar 

  22. Wang HD, Obenauer-Kutner L, Lin M et al (2008) Imaging glycosylation. J Am Chem Soc 130(26):8154–8155

    Google Scholar 

  23. Wang HD, Dalal Y, Henikoff S et al (2008) Single-epitope recognition imaging of native chromatin. Epigenetics Chromatin 1:10

    Google Scholar 

  24. Muller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2(9):2191–2197

    Article  Google Scholar 

  25. Braga PC, Ricci D (2011) Atomic force microscopy in biomedical research: methods and protocols. Methods Mol Biol Methods Protoc 736 (Springer Science + Business Media, LLC, Totowa, NJ):223–241

    Google Scholar 

  26. Fotiadis D (2012) Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol 23(4):510–515

    Article  CAS  Google Scholar 

  27. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421(6919):127–128

    Article  CAS  Google Scholar 

  28. Orsini F, Santacroce M, Arosio P et al (2010) Observing Xenopus laevis oocyte plasma membrane by atomic force microscopy. Methods 51(1):106–113

    Article  CAS  Google Scholar 

  29. Schillers H (2008) Imaging CFTR in its native environment. Pflugers Arch Euro J Physiol 456(1):163–177

    Article  CAS  Google Scholar 

  30. Usukura J, Yoshimura A, Minakata S et al (2012) Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions. J Electron Microsc 61(5):321–326

    Article  CAS  Google Scholar 

  31. Murakoshi M, Iida K, Kumano S et al (2009) Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots. Pflugers Arch Eur J Physiol 457(4):885–898

    Article  CAS  Google Scholar 

  32. Dindia L, Faught E, Leonenko Z et al (2013) Rapid cortisol signaling in response to acute stress involves changes in plasma membrane order in rainbow trout liver. Am J Physiol Endocrinol Metab 304(11):E1157–E1166

    Article  CAS  Google Scholar 

  33. Frankel DJ, Pfeiffer JR, Surviladze Z et al (2006) Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys J 90(7):2404–2413

    Article  CAS  Google Scholar 

  34. Muller DJ, Hand GM, Engel A et al (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21(14):3598–3607

    Article  CAS  Google Scholar 

  35. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731

    Article  CAS  Google Scholar 

  36. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838(6):1451–1466

    Article  CAS  Google Scholar 

  37. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  38. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    Article  CAS  Google Scholar 

  39. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    Article  CAS  Google Scholar 

  40. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  Google Scholar 

  41. Neumann-Giesen C, Falkenbach B, Beicht P et al (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 378:509–518

    Article  CAS  Google Scholar 

  42. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159

    Article  CAS  Google Scholar 

  43. El Kirat K, Morandat S (2007) Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. Biochimica Et Biophysica Acta-Biomembranes 1768(9):2300–2309

    Article  Google Scholar 

  44. Orsini F, Cremona A, Arosio P et al (2012) Atomic force microscopy imaging of lipid rafts of human breast cancer cells. Biochim Biophys Acta 12:2943–2949

    Article  Google Scholar 

  45. Mongrand S, Stanislas T, Bayer EMF et al (2010) Membrane rafts in plant cells. Trends Plant Sci 15(12):656–663

    Article  CAS  Google Scholar 

  46. Cai MJ, Zhao WD, Shang X et al (2012) Direct evidence of lipid rafts by in situ atomic force microscopy. Small 8(8):1243–1250

    Article  CAS  Google Scholar 

  47. Wu L, Huang J, Yu X et al (2014) AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells. J Membr Biol 247(2):189–200

    Article  CAS  Google Scholar 

  48. Chichili GR, Rodgers W (2007) Clustering of membrane raft proteins by the actin cytoskeleton. J Biol Chem 282(50):36682–36691

    Article  CAS  Google Scholar 

  49. Sun M, Northup N, Marga F et al (2007) The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 120(13):2223–2231

    Article  CAS  Google Scholar 

  50. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580

    Article  CAS  Google Scholar 

  51. Jiang JG, Hao X, Cai MJ et al (2009) Localization of Na+−K+ ATPases in quasi-native cell membranes. Nano Lett 9(12):4489–4493

    Article  CAS  Google Scholar 

  52. Shan YP, Wang ZY, Hao XA et al (2010) Locating the Band III protein in quasi-native cell membranes. Anal Methods 2(7):805–808

    Article  CAS  Google Scholar 

  53. Wang HD, Hao X, Shan YP et al (2010) Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy 110(4):305–312

    Article  CAS  Google Scholar 

  54. Plummer TH, Elder JH, Alexander S et al (1984) Demonstration of peptide-N-glycosidase-F activity in endo-beta-N-acetylglucosaminidase F preparations. J Biol Chem 259(17):700–704

    Google Scholar 

  55. Johnson SJ, Bayerl TM, McDermott DC et al (1991) Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59(2):289–294

    Article  CAS  Google Scholar 

  56. Triplett RB, Carraway KL (1972) Proteolytic digestion of erythrocytes, resealed ghosts and isolated membranes. Biochemistry 11(15):2897–2903

    Article  CAS  Google Scholar 

  57. Wu JZ, Gao J, Qi M et al (2013) High-efficiency localization of Na+−K+ ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. Nanoscale 5(23):11582–11586

    Article  CAS  Google Scholar 

  58. Tian YM, Cai MJ, Zhao WD et al (2014) The asymmetric membrane structure of erythrocytes from Crucian carp studied by atomic force microscopy. Chin Sci Bull 59(21):2582–2587

    Article  CAS  Google Scholar 

  59. Tian YM, Cai MJ, Xu HJ et al (2014) Atomic force microscopy of asymmetric membranes from turtle erythrocytes. Mol Cells 37(8):592–597

    Article  Google Scholar 

  60. Tian YM, Cai MJ, Xua HJ et al (2014) Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy. Anal Methods 6(20):8115–8119

    Article  CAS  Google Scholar 

  61. Allen MJ, Hud NV, Balooch M et al (1992) Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. Ultramicroscopy 42:1095–1100

    Article  Google Scholar 

  62. Chiari Y, Cahais V, Galtier N et al (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10(1):65

    Article  Google Scholar 

  63. Lee S, Mandic J, Van Vliet KJ (2007) Chemomechanical mapping of ligand–receptor binding kinetics on cells. Proc Natl Acad Sci 104(23):9609–9614

    Article  CAS  Google Scholar 

  64. Zhang J, Chtcheglova LA, Zhu R et al (2014) Nanoscale organization of human GnRH-R on human bladder cancer cells. Anal Chem 86(5):2458–2464

    Article  CAS  Google Scholar 

  65. Lau JM, You HX, Yu L (2002) Lattice-like array particles on Xenopus oocyte plasma membrane. Scanning 24(5):224–231

    Article  Google Scholar 

  66. Zhao WD, Tian YM, Cai MJ et al (2014) Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS One 9(5):13

    Google Scholar 

  67. Xu HJ, Su WH, Cai MJ et al (2013) The asymmetrical structure of golgi apparatus membranes revealed by in situ atomic force microscope. PLoS One 8(4):e61596

    Google Scholar 

  68. Tian YM, Li JH, Cai MJ et al (2013) High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv 3(3):708–712

    Article  CAS  Google Scholar 

  69. Wang Y, Gao J, Guo XD et al (2014) Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24(8):959–976

    Article  CAS  Google Scholar 

  70. Ebner A, Wildling L, Kamruzzahan ASM et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18(4):1176–1184

    Article  CAS  Google Scholar 

  71. Wildling L, Unterauer B, Zhu R et al (2011) Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 22(6):1239–1248

    Article  CAS  Google Scholar 

  72. Ziegler U, Vinckier A, Kernen P et al (1998) Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett 436(2):179–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0505300), the National Natural Science Foundation of China (No. 21525314 2, 1503213, 21703231, 21721003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongda Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, M., Gao, J., Wang, H. (2018). Imaging Membranes by High-Resolution Atomic Force Microscopy. In: Wang, H., Li, G. (eds) Membrane Biophysics. Springer, Singapore. https://doi.org/10.1007/978-981-10-6823-2_3

Download citation

Publish with us

Policies and ethics