Desulfurization Kinetics and Thermodynamics

  • Jiang Wu
  • Dongjing Liu
  • Weiguo Zhou
  • Qizhen Liu
  • Yaji Huang
Part of the Energy and Environment Research in China book series (EERC)


The high-temperature desulfurization is a complicated gas-solid non-catalytic redox reaction, the sulfidation activities of cerium-based, lanthanum-based desulfurizers and nano elemental metal (nano Cu and nano Fe) desulfurizers are governed by chemical factors (active components) as well as physical factors (such as surface areas, pore structures, and particle sizes).


  1. 1.
    Malet, P., Caballere, A.: Temperature programmed reduction. Catal. Rev. 24(2), 233–309 (1982)CrossRefGoogle Scholar
  2. 2.
    Yang, X.R.: Study approaches for solid catalysts-chapter 13 temperature programmed analysis technique (part 1). Petrochemical Technology 30(12), 952–959 (2001). (In Chinese)Google Scholar
  3. 3.
    Yang, X.R.: Study approaches for solid catalysts-chapter 13 temperature programmed analysis technique (part 2). Petrochemical Technology 31(1), 63–73 (2002). (in Chinese)Google Scholar
  4. 4.
    Ko, T.H., Chu, H., Liou, Y.J.: A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas. J. Hazard. Mater. 147(1–2), 334–341 (2007)CrossRefGoogle Scholar
  5. 5.
    Suyadal, Y., Erol, M., Oǧuz, H.: Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed. Ind. Eng. Chem. Res. 39(3), 724–730 (2000)CrossRefGoogle Scholar
  6. 6.
    Balichard, K., Nyikeine, C., Bezverkhyy, I.: Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S. J. Hazard. Mater. 264(2), 79–83 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, F.F., Zhang, D.X., Zhao, H., Wu, T., Gao, J.: Research into the kinetics of COS elimination from syngas at moderate temperatures. Fuel 89(4), 888–893 (2010)CrossRefGoogle Scholar
  8. 8.
    Kempegowda, R.S., Laosiripojana, N., Assabumrungrat, S.: High temperature desulfurization over nano-scale high surface area ceria for application in SOFC. Korean J. Chem. Eng. 25(25), 223–230 (2008)CrossRefGoogle Scholar
  9. 9.
    Ye, D.L., Hu, J.H.: Practical inorganic thermodynamic data manual. Metallurgical Industry Press, Bejing (2002)Google Scholar
  10. 10.
    Kay, D.A.R., Wilson, W.G., Jalan, V.: High temperature thermodynamics and applications of rare earth compounds containing oxygen and sulphur in fuel gas desulphurization and SOx and NOx removal. J. Alloy. Compd. 193(1–2), 11–16 (1993)CrossRefGoogle Scholar
  11. 11.
    Denisov, V.M., Denisova, L.T., Chumilina, L.G., Kirik, S.D.: High-temperature heat capacity of La2CuO4. Phys. Solid State 55(7), 1381–1384 (2013)CrossRefGoogle Scholar
  12. 12.
    Satoh, H., Takagi, M., Kinukawa, K.I., Kamegashira, N.: Heat capacity of LaMnO3. Thermochim. Acta 299(1), 123–126 (1997)CrossRefGoogle Scholar
  13. 13.
    Akila, R., Jacob, K.T., Shukla, A.K.: Gibbs energies of formation of rare earth oxysulfides. Metall. Mater. Trans. B 18(1), 163–168 (1987)CrossRefGoogle Scholar
  14. 14.
    Joo, O.S., Jung, K.D.: Stability of ZnAl2O4 catalysts for reverse-water-shift reaction (RWGSR). Bull. Korean Chem. Soc. 24, 86–90 (2003)CrossRefGoogle Scholar
  15. 15.
    Sasaoka, E., Iwamoto, Y., Hirano, S., Uddin, M.A., Sakata, Y.: Soot formation over zinc ferrite high-temperature desulfurization sorbent. Energy Fuels 9(2), 344–353 (1995)CrossRefGoogle Scholar
  16. 16.
    Kobayashi, M., Flytzani-Stephanopoulos, M.: Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide. Ind. Eng. Chem. Res. 41(13), 3115–3123 (2002)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Flytzani-Stephanopoulos, M.: Cerium oxide-based sorbents for regenerative hot reformate gas desulfurization. Energy Fuels 19(5), 2089–2097 (2005)CrossRefGoogle Scholar
  18. 18.
    Yasyerli, S.: Cerium-manganese mixed oxides for high temperature H2S removal and activity comparisons with V-Mn, Zn-Mn, Fe-Mn sorbents. Chem. Eng. Process. 47(4), 577–584 (2008)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z.F., Liu, B.S., Wang, F., Li, J.F.: Fabrication and performance of xMnyCe/Hexagonal mesoporous silica sorbents with wormhole-like framework for hot coal gas desulphurization. Energy Fuels 27(12), 7754–7761 (2013)CrossRefGoogle Scholar
  20. 20.
    Gao, L.Z., Sun, G.B., Kawi, S.: A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst. J. Solid State Chem. 181, 7–13 (2008)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiang Wu
    • 1
  • Dongjing Liu
    • 2
    • 3
  • Weiguo Zhou
    • 4
  • Qizhen Liu
    • 5
  • Yaji Huang
    • 6
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.College of Mechanical EngineeringTongji UniversityShanghaiChina
  3. 3.Leibniz Institute for Catalysis at University of RostockRostockGermany
  4. 4.College of Mechanical EngineeringTongji UniversityShanghaiChina
  5. 5.Shanghai Environment Monitoring CenterShanghaiChina
  6. 6.School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations