Nano Elemental Metal Desulfurizers

  • Jiang Wu
  • Dongjing Liu
  • Weiguo Zhou
  • Qizhen Liu
  • Yaji Huang
Part of the Energy and Environment Research in China book series (EERC)


It is well known that the support of sorbents plays a crucial role in gas diffusion and sulfidation reaction, and the supports of big specific areas and large pore volumes are beneficial for H2S adsorption [1]. Mesoporous carbon aerogel, a 3-D network structure of interconnected nanosized primary particles, is regarded to be a preferable support. Carbon aerogels have a unique porous structure, including well-developed and controlled interparticle mesopores and intraparticle micropores, huge pore volume, and large specific surface area. Additionally, the carbon aerogels remain stable under high temperature, and they could be formed into various shapes and can be used without any further forming treatment, which makes these materials attractive as the support of the desulfurizer [2, 3, 4].


  1. 1.
    Fan, H.L., Sun, T., Zhao, Y.P., Shangguan, J., Lin, J.Y.: Three-dimensionally ordered macroporous iron oxide for removal of H2S at medium temperatures. Environ. Sci. Technol. 47(9), 4859–4865 (2013)CrossRefGoogle Scholar
  2. 2.
    Pekala, R.W., Kong, F.M.: Resorcinol-formaldehyde aerogels and their carbonized derivatives. Abstr. Pap. Am. Chem. Soc. 197(10), 113 (1988)Google Scholar
  3. 3.
    Wu, D., Fu, R., Sselhaus, M.S., Dresselhaus, G.: Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon 44, 675–681 (2006)CrossRefGoogle Scholar
  4. 4.
    Al-Muhtaseb, S.A., Ritter, J.A.: Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15(2), 101–114 (2003)CrossRefGoogle Scholar
  5. 5.
    Berthon, S., Barbieri, O., Ehrburger-Dolle, F.O., Geissler, E., Achard, P., Bley, F.O., Hecht, A.M., Livet, F., Pajonk, G.M., Pinto, N.: DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids 285, 154–161 (2001)Google Scholar
  6. 6.
    Wu, J., Yang, S., Liu, Q., He, P., Tian, H., Ren, J., Guan, Z., Hu, T., Ni, B., Zhang, C.: Cu Nanoparticles inlaid mesoporous carbon aerogels as a high performance desulfurizer. Environ. Sci. Technol. 50, 5370–5378 (2016)CrossRefGoogle Scholar
  7. 7.
    Tian, H., Wu, J., Zhang, W., Yang, S., Li, F., Qi, Y., Zhou, R., Qi, X., Zhao, L., Wang, X.: High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal. Chem. Eng. J. 313, 1051–1060 (2017)CrossRefGoogle Scholar
  8. 8.
    Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57(11), 603–619 (1985)Google Scholar
  9. 9.
    Maldonado-Hódar, F.J., Ferro-Garcı́A, M.A., Rivera-Utrilla, J., Moreno-Castilla, C.: Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37, 1199–1205 (1999)CrossRefGoogle Scholar
  10. 10.
    Li, J., Gu, J., Li, H., Liang, Y., Hao, Y., Sun, X., Wang, L.: Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Microporous Mesoporous Mater. 128, 144–149 (2010)CrossRefGoogle Scholar
  11. 11.
    Zhang, T.M., Zhao, D.L., Yin, L., Shen, Z.M.: Synthesis and magnetic properties of iron nanoparticles confined in highly ordered mesoporous carbons. J. Alloy. Compd. 508, 147–151 (2010)CrossRefGoogle Scholar
  12. 12.
    Song, H., Chen, X., Chen, X., Zhang, S., Li, H.: Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon 41, 3037–3046 (2003)CrossRefGoogle Scholar
  13. 13.
    Oberlin, A., Rouchy, J.P.: Transformation des carbones non graphitables par traitement thermique en presence de fer. Carbon 9, 39–46 (1971)CrossRefGoogle Scholar
  14. 14.
    Weisweiler, W., Subramanian, N., Terwiesch, B.: Catalytic influence of metal melts on the graphitization of monolithic glasslike carbon. Carbon 9, 755–758 (1971)CrossRefGoogle Scholar
  15. 15.
    Kim, J.Y., Rodriguez, J.A., Hanson, J.C., Frenkel, A.I., Lee, P.L.: Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125(35), 10684–10692 (2003)CrossRefGoogle Scholar
  16. 16.
    Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10(2–3), 63–74 (1987)CrossRefGoogle Scholar
  17. 17.
    Muhler, M., Schlögl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992)CrossRefGoogle Scholar
  18. 18.
    Rodriguez, J.A., Chaturvedi, S., Kuhn, M., Hrbek, J.: Reaction of H2S and S2 with metal/oxide surfaces: band-gap size and chemical reactivity. J. Phys. Chem. B 102(28), 5511–5519 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, D.J., Zhou, W.G., Wu, J.: CeO2–MnOx/ZSM-5 sorbents for H2S removal at high temperature. Chem. Eng. J. 284, 862–871 (2016)CrossRefGoogle Scholar
  20. 20.
    Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., Lojewski, T., Dziembaj, R., Papp, H.: Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Appl. Catal. B 18(3), 199–213 (1998)CrossRefGoogle Scholar
  21. 21.
    Bagreev, A., Menendez, J.A., Dukhno, I., Tarasenko, Y., Bandosz, T.J.: Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42(3), 469–476 (2004)CrossRefGoogle Scholar
  22. 22.
    Shpiro, E.S., Joyner, R.W., Grünert, W., Hayes, N.W., Siddiqui, M.R.H., Baeva, G.N.: Structure, chemistry and activity of well-defined Cu–ZSM-5 catalysts in the selective reduction of NOX. Stud. Surf. Sci. Catal. 1483–1492 (1994)Google Scholar
  23. 23.
    Espinós, J.P., Morales, J., Barranco, A., Caballero, A., Holgado, J.P., González-Elipe, A.R.: Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 106(27), 6921–6929 (2002)CrossRefGoogle Scholar
  24. 24.
    Yin, A., Guo, X., Dai, W.L., Fan, K.: The nature of active copper species in Cu–HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C 113(25), 11003–11013 (2009)CrossRefGoogle Scholar
  25. 25.
    Yazdanbakhsh, F., Bläsing, M., Sawada, J.A., Rezaei, S., Müller, M., Baumann, S., Kuznicki, S.M.: Copper exchanged nanotitanate for high temperature H2S adsorption. Ind. Eng. Chem. Res. 53(29), 11734–11739 (2014)CrossRefGoogle Scholar
  26. 26.
    Fukuda, K., Dokiya, M., Kameyama, T., Kotera, Y.: Catalytic decomposition of hydrogen sulfide. Ind. Eng. Chem. Fundam. 17(4), 243–248 (1978)CrossRefGoogle Scholar
  27. 27.
    Yasyerli, S., Dogu, G., Ar, I., Dogu, T.: Activities of copper oxide and Cu–V and Cu–Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model. Ind. Eng. Chem. Res. 40(23), 5206–5214 (2001)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiang Wu
    • 1
  • Dongjing Liu
    • 2
    • 3
  • Weiguo Zhou
    • 4
  • Qizhen Liu
    • 5
  • Yaji Huang
    • 6
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.College of Mechanical EngineeringTongji UniversityShanghaiChina
  3. 3.Leibniz Institute for Catalysis at University of RostockRostockGermany
  4. 4.College of Mechanical EngineeringTongji UniversityShanghaiChina
  5. 5.Shanghai Environment Monitoring CenterShanghaiChina
  6. 6.School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations