Advertisement

Rare-Earth Oxide Desulfurizers

  • Jiang Wu
  • Dongjing Liu
  • Weiguo Zhou
  • Qizhen Liu
  • Yaji Huang
Chapter
Part of the Energy and Environment Research in China book series (EERC)

Abstract

The IGCC coarse gas derived from coal gasification process usually contains large amounts of sulfur containing components, such as H2S, COS, and CS2, 90% of them are H2S (~0.1 to 1.5 vol.%) which could cause severe corrosion of the pipelines, facilities, and catalysts in the subsequent coal gas conversion process; thus, the sulfur compounds need to be removed prior to syngas utilization. The hot coal gases are often purified with solid sorbents (single metal oxides or bimetal oxides), namely, called as dry desulfurization. Recently, the most commonly used sorbents are transition-metal oxides and their composites, for instance, zinc oxide, copper oxide, ferric oxide, and manganese oxide as well as zinc ferrite, zinc titanate, which are called as the first-generation high-temperature desulfurizers (FHDs)

References

  1. 1.
    Liu, B.S., Wei, X.N., Zhan, Y.P., Chang, R.Z., Subhan, F., Au, C.T.: Preparation and desulfurization performance of LaMeOx/SBA-15 for hot coal gas. Appl. Catal. B: Environ. 102(1–2), 27–36 (2011)Google Scholar
  2. 2.
    Zhang, Z.F., Liu, B.S., Wang, F., Li, J.F.: Fabrication and performance of xMnyCe/Hexagonal mesoporous silica sorbents with wormhole-like framework for hot coal gas desulfurization. Energy Fuels 27(12), 7754–7761 (2013)CrossRefGoogle Scholar
  3. 3.
    Yong, S.H., Zhang, Z.F., Cai, Z.P., Zhao, X.H., Liu, B.S.: Deactivation kinetics model of H2S removal over mesoporous LaFeO3/MCM-41 sorbent during hot coal gas desulfurization. Energy Fuels 28(9), 6012–6018 (2014)CrossRefGoogle Scholar
  4. 4.
    Liu, D.J., Zhou, W.G., Wu, J.: CeO2–MnOx/ZSM-5 sorbents for H2S removal at high temperature. Chem. Eng. J. 284(15), 862–871 (2016)CrossRefGoogle Scholar
  5. 5.
    Liu, D.J., Zhou, W.G., Wu, J.: CuO–CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulfide at high temperature. Can. J. Chem. Eng. 94(12), 2276–2281 (2016)CrossRefGoogle Scholar
  6. 6.
    Fang, X., Chen, C., Lin, X., She, Y., Zhan, Y., Zheng, Q.: Effect of La2O3 on microstructure and catalytic performance of CuO/CeO2 catalyst in water-gas shift reaction. Chin. J. Catal. 33(2), 425–431 (2012)CrossRefGoogle Scholar
  7. 7.
    Guo, R.T., Zhen, W.L., Pan, W.G., Zhou, Y., Hong, J.N., Xu, H.J., Jin, Q., Ding, C.G., Guo, S.Y.: Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. J. Ind. Eng. Chem. 20(4), 1577–1580 (2014)CrossRefGoogle Scholar
  8. 8.
    Pan, W.G., Hong, J.N., Guo, R.T., Zhen, W.L., Ding, H.L., Jin, Q., Ding, C.G., Guo, S.Y.: Effect of support on the performance of Mn-Cu oxides for low temperature selective catalytic reduction of NO with NH3. J. Ind. Eng. Chem. 20(4), 2224–2227 (2014)CrossRefGoogle Scholar
  9. 9.
    Gu, T., Liu, Y., Weng, X., Wang, H., Wu, Z.: The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal. Commun. 12(4), 310–313 (2010)CrossRefGoogle Scholar
  10. 10.
    Yang, S., Zhu, W., Jiang, Z., Chen, Z., Wang, J.: The surface properties and the activities in catalytic wet air oxidation over CeO2–TiO2 catalysts. Appl. Surf. Sci. 252(24), 8499–8505 (2006)CrossRefGoogle Scholar
  11. 11.
    Gao, X., Jiang, Y., Zhong, Y., Luo, Z., Cen, K.: The activity and characterization of CeO2–TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3. J. Hazard. Mater. 174(1), 734–739 (2010)CrossRefGoogle Scholar
  12. 12.
    Smirnov, M.Y., Kalinkin, A.V., Pashis, A.V., Sorokin, A.M., Noskov, A.S., Kharas, K.C., Bukhtiyarov, V.I.: Interaction of Al2O3 and CeO2 surfaces with SO2 and SO2 + O2 studied by X-ray photoelectron spectroscopy. J. Phys. Chem. B 109(23), 11712–11719 (2005)Google Scholar
  13. 13.
    Dutta, P., Pal, S., Seehra, M.S., Shi, Y., Eyring, E.M., Ernst, R.D.: Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem. Mater. 18(21), 5144–5146 (2006)CrossRefGoogle Scholar
  14. 14.
    Han, Y.F., Chen, F., Ramesh, K., Zhong, Z., Widjaja, E., Chen, L.: Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2. Appl. Catal. B 76(3), 227–234 (2007)CrossRefGoogle Scholar
  15. 15.
    Han, Y.F., Chen, F., Zhong, Z., Ramesh, K., Chen, L., Widjaja, E.: Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B 110(48), 24450–24456 (2006)CrossRefGoogle Scholar
  16. 16.
    Mirji, S.A., Halligudi, S.B., Mathew, N., Ravi, V., Jacob, N.E., Patil, K.R.: Adsorption of methanol on Si (100)/SiO2 and mesoporous SBA-15. Colloids Surf. A Physicochem. Eng. Aspects 287(1), 51–58 (2006)CrossRefGoogle Scholar
  17. 17.
    Jampaiah, D., Tur, K.M., Venkataswamy, P., Ippolito, S.J., Sabri, Y.M., Tardio, J., Bhargava, S.K., Reddy, B.M.: Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO2-MnOx catalyst. RSC Adv. 5(38), 30331–30341 (2015)CrossRefGoogle Scholar
  18. 18.
    Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Muilenberg, G.E.: Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MN (1992)Google Scholar
  19. 19.
    Caglayan, P., Yasyerli, S., Ar, I., Dogu, G., Dogu, T.: Kinetics of H2S sorption on manganese oxide and Mn–Fe–Cu mixed oxide prepared by the complexation technique. Int. J. Chem. Eng. 2006(4), A18 (2006)Google Scholar
  20. 20.
    Li, R., Krcha, M.D., Janik, M.J., Roy, A.D., Dooley, K.M.: Ce-Mn oxides for high-temperature gasifier effluent desulfurization. Energy Fuels 26(11), 6765–6776 (2012)Google Scholar
  21. 21.
    Liu, D.J., Zhou, W.G., Wu, J.: La2CuO4/ZSM-5 sorbents for high-temperature desulphurization. Fuel 177(8), 251–259 (2016)CrossRefGoogle Scholar
  22. 22.
    Liu, D.J., Zhou, W.G., Wu, J.: Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature. Adsorption 22(3), 327–334 (2016)CrossRefGoogle Scholar
  23. 23.
    Lisi, L., Pirone, R., Russo, G., Santamaria, N., Stanzione, V.: Nitrates and nitrous oxide formation during the interaction of nitrogen oxides with Cu-ZSM-5 at low temperature. Appl. Catal. A 413, 117–131 (2012)CrossRefGoogle Scholar
  24. 24.
    Becker, S., Baerns, M.: Oxidative coupling of methane over La2O3–CaO catalysts effect of bulk and surface properties on catalytic performance. J. Catal. 128(2), 512–519 (1991)CrossRefGoogle Scholar
  25. 25.
    Dake, L.S., King, D.E., Czanderna, A.W.: Ion scattering and X-ray photoelectron spectroscopy of copper overlayers vacuum deposited onto mercaptohexadecanoic acid self-assembled monolayers. Solid State Sci. 2(8), 781–789 (2000)CrossRefGoogle Scholar
  26. 26.
    Li, S., Wang, H., Xu, W., Si, H., Tao, X., Lou, S., Du, Z., Li, L.S.: Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interface Sci. 330(2), 483–487 (2009)CrossRefGoogle Scholar
  27. 27.
    Limouzin-Maire, Y.: Etude par spectroscopie ESCA de sulfures et sulfates de manganese, fer, cobalt, nickel, cuivre et zinc. Bulletin de la Société Chimique de France 1, 340–343 (1981)Google Scholar
  28. 28.
    Lindberg, B., Hamrin, K., Johansson, G., Gelius, U., Fahlman, A., Nordling, C., Siegbahn, K.: Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys. Scr. 1(5–6), 286 (1970)CrossRefGoogle Scholar
  29. 29.
    Gao, L., Sun, G., Kawi, S.: A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst. J. Solid State Chem. 181(1), 7–13 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Chen, X., Zhang, X., Lin, H., Lin, H., Zhou, Y., Wang, X.: Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production. Catal. Commun. 36, 20–24 (2013)CrossRefGoogle Scholar
  31. 31.
    Zeng, B., Li, H., Huang, T., Liu, C., Yue, H., Liang, B.: Kinetic study on the sulfidation and regeneration of manganese-based regenerable sorbent for high temperature H2S removal. Ind. Eng. Chem. Res. 54(4), 1179–1188 (2015)CrossRefGoogle Scholar
  32. 32.
    Liu, D., Chen, S., Fei, X., Huang, C., Zhang, Y.: Regenerable CuO-based adsorbents for low temperature desulfurization application. Ind. Eng. Chem. Res. 54(14), 3556–3562 (2015)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiang Wu
    • 1
  • Dongjing Liu
    • 2
    • 3
  • Weiguo Zhou
    • 4
  • Qizhen Liu
    • 5
  • Yaji Huang
    • 6
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.College of Mechanical EngineeringTongji UniversityShanghaiChina
  3. 3.Leibniz Institute for Catalysis at University of RostockRostockGermany
  4. 4.College of Mechanical EngineeringTongji UniversityShanghaiChina
  5. 5.Shanghai Environment Monitoring CenterShanghaiChina
  6. 6.School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations