Advertisement

H2S and Its Effect on Devices and Environment

  • Jiang Wu
  • Dongjing Liu
  • Weiguo Zhou
  • Qizhen Liu
  • Yaji Huang
Chapter
Part of the Energy and Environment Research in China book series (EERC)

Abstract

Hydrogen sulfide, the chemical compound with the formula H2S, is a colorless gas with the characteristic foul odor of rotten eggs, and it is very poisonous, corrosive, acidic, and flammable [1]. Swedish chemist Carl Wilhelm Scheele has firstly discovered hydrogen sulfide in 1777. Hydrogen sulfide usually results from the microbial breakdown of organic matters in the absence of oxygen gas, such as in swamps and sewers; this process is commonly known as anaerobic digestion. Hydrogen sulfide could also occur in volcanic gases, natural gas, and in some sources of well water. The human body produces small amounts of hydrogen sulfide and uses it as a signaling molecule.

References

  1. 1.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements (second edn.). Butterworth-Heinemann (1997)Google Scholar
  2. 2.
    Tola, V., Pettinau, A.: Power generation plants with carbon capture and storage: a technology economic comparison between coal combustion and gasification technologies. Appl. Energy 113, 1461–1474 (2014)CrossRefGoogle Scholar
  3. 3.
    Cormos, A.M., Cormos, C.C.: Investigation of hydrogen and power co-generation based on direct coal chemical looping systems. International Journal of Hydrogen Energy 39(5), 2067–2077 (2014)Google Scholar
  4. 4.
    Osborn, A.: The Energy Road Map 2050. Utility Week (2011)Google Scholar
  5. 5.
    Huang, Y., Rezvani, S., McIlveen-Wright, D., Minchener, A., Hewitt, N.: Techno-economic study of CO2 capture and storage in coal fired oxygen fed entrained flow IGCC power plants. Fuel Process. Technol. 89(9), 916–925 (2008)CrossRefGoogle Scholar
  6. 6.
    Moioli, S., Giuffrida, A., Gamba, S., Romano, M.C., Pellegrini, L., Lozza, G.: Pre-combustion CO2 capture by MDEA process in IGCC based on air-blown gasification. Energy Procedia 63, 2045–2053 (2014)CrossRefGoogle Scholar
  7. 7.
    Liang, X., Wang, Z., Zhou, Z., Huang, Z., Zhou, J., Cen, K.: Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J. Clean. Prod. 39(5), 24–31 (2013)CrossRefGoogle Scholar
  8. 8.
    Iliuta, I., Larachi, F.: Concept of bifunctional Redox iron-chelate process for H2S removal in pulp and paper atmospheric emissions. Chem. Eng. Sci. 58(23–24), 5305–5314 (2003)CrossRefGoogle Scholar
  9. 9.
    Lindenmann, J., Matzi, V., Neuboeck, N., Ratzenhofer-Komenda, B., Maier, A., Smolle-Juettner, F.M.: Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen. Diving Hyperb. Med. 40(4), 213–217 (2010)Google Scholar
  10. 10.
    Ramasamy, S., Singh, S., Taniere, P., Langman, M.J.S., Eggo, M.C.: Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 291(2), G288–G296 (2006)CrossRefGoogle Scholar
  11. 11.
    Lu, J.G., Zheng, Y.F., He, D.L.: Selective absorption of H2S from gas mixtures into aqueous solutions of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column. Sep. Purif. Technol. 52(2), 209–217 (2006)CrossRefGoogle Scholar
  12. 12.
    Satoh, H., Yoshizawa, J., Kametani, S.: Bacteria help desulfurize gas. Hydrocarbon Process (United States) (1988)Google Scholar
  13. 13.
    Kohl, A.L., Nielsen, R.B.: Gas Purification (fifth edition). Gulf Professional Publishing (1997)Google Scholar
  14. 14.
    Pierre, R.S., Dai, P.M., Dalton, M.: Removal of CO2 from a hydrogen plant. University of Saskatchewan (2008)Google Scholar
  15. 15.
    Nagl, G.J.: Controlling hydrogen sulfide emissions. Water Eng. Manage. 143(12), 18–22 (1996)Google Scholar
  16. 16.
    Garrett, R.L., Carlton, L.A., Denekas, M.O.: Methods for field monitoring of oil-based drilling fluids for hydrogen sulfide and water intrusions (includes associated papers 20284 and 20285). SPE Drilling Eng. 3(3), 296–302 (1988)CrossRefGoogle Scholar
  17. 17.
    Speight, J.G.: Gas processing: environmental aspects and methods. Butterworth-Heinemann (1993)Google Scholar
  18. 18.
    Polychronopoulou, K., Galisteo, F.C., Granados, M.L., Fierro, J.L.G., Bakas, T., Efstathiou, A.M.: Novel Fe-Mn-Zn-Ti-O mixed-metal oxides for the low-temperature removal of H2S from gas streams in the presence of H2, CO2, and H2O. J. Catal. 236(2), 205–220 (2005)CrossRefGoogle Scholar
  19. 19.
    Wubs, H.J., Beenackers, A.A.C.M., Krishna, R.: Absorption of hydrogen sulfide in aqueous solutions of iodine-a critical review. Chem. Eng. Sci. 46(2), 703–706 (1991)CrossRefGoogle Scholar
  20. 20.
    Husein, M.M., Patruyo, L., Pereira-Almao, P., Nassar, N.N.: Scavenging H2S (g) from oil phases by means of ultradispersed sorbents. J. Colloid Interface Sci. 342(2), 253–260 (2010)CrossRefGoogle Scholar
  21. 21.
    Slimane, R.B., Abbasian, J.: Regenerable mixed metal oxide sorbents for coal gas desulfurization at moderate temperatures. Adv. Environ. Res. 4(2), 147–162 (2000)CrossRefGoogle Scholar
  22. 22.
    Yumura, M., Furimsky, E.: Comparison of calcium oxide, zinc oxide, and iron(III) oxide hydrogen sulfide adsorbents at high temperatures. Ind. Eng. Chem. Process Des. Dev. 24(4), 1165–1168 (1985)CrossRefGoogle Scholar
  23. 23.
    Fuda, K., Palmer, A.D., Sears, P., Blais, D., Furimsky, E.: Chemical changes occurring during sulphidation and regeneration of iron-containing sorbents. Fuel 70(1), 100–106 (1991)CrossRefGoogle Scholar
  24. 24.
    Stirling, D.: The sulfur problem: cleaning up industrial feedstocks. Royal Society of Chemistry (2007)Google Scholar
  25. 25.
    Fox, I.: Method of using a reactive iron oxide drilling mud additive. U.S. Patent No. 4, 324, 298 (1982)Google Scholar
  26. 26.
    Sasaoka, E., Ichio, T., Kasaoka, S.: High-temperature hydrogen sulfide removal from coal-derived gas by iron ore. Energy Fuels 6(5), 603–608 (1992)CrossRefGoogle Scholar
  27. 27.
    Nicksic, S.W.: Method for desulfurizing gases with iron oxide. U.S. Patent No. 4, 238, 463 (1980)Google Scholar
  28. 28.
    Wang, D.M.: Breakthrough behavior of H2S removal with an iron oxide based CG-4 adsorbent in a fixed-bed reactor. University of Saskatchewan (2008)Google Scholar
  29. 29.
    Vatopoulos, K., Tzimas, E.: Assessment of CO2 capture technologies in cement manufacturing process. J. Clean. Prod. 32(32), 251–261 (2012)CrossRefGoogle Scholar
  30. 30.
    Meissner III, R.E., Wagner, U.: Low-energy process recovers CO/sub2. Oil Gas J. 81, 5 (1983)Google Scholar
  31. 31.
    Bhutto, A.W., Karim, S.: Coal gasification for sustainable development of the energy sector in Pakistan. Energy. Sustain. Dev. 9(4), 60–67 (2005)CrossRefGoogle Scholar
  32. 32.
    Zhang, J., Zhou, Z., Ma, L., Li, Z., Ni, W.: Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal-water slurry preheating vaporization technology. Energy 51, 137–145 (2013)CrossRefGoogle Scholar
  33. 33.
    Smith, A.R., Klosek, J., Woodward, D.W.: Next-generation integration concepts for air separation units and gas turbines. ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers (1996)Google Scholar
  34. 34.
    Dillon, D.J., Panesar, R.S., Wall, R.A., Allam, R.J., White, V., Gibbins, J., Haines, M.R.: Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. 7th International Conference on Greenhouse Gas Technologies, Vancouver, Canada (2004)Google Scholar
  35. 35.
    Black, J.: Cost and performance baseline for fossil energy plants volume 1: bituminous coal and natural gas to electricity. Final report (second edition), National Energy Technology Laboratory (2010)Google Scholar
  36. 36.
    Cormos, C.C.: Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage. Int. J. Hydrogen Energy 37(7), 5637–5648 (2012)CrossRefGoogle Scholar
  37. 37.
    Chiesa, P., Lozza, G., Mazzocchi, L.: Using Hydrogen as Gas Turbine Fuel. J. Eng. Gas Turbines Power 127(1), 163–171 (2010)Google Scholar
  38. 38.
    Kim, Y.S., Lee, J.J., Kim, T.S., Sohn, J.L., Joo, Y.J.: Performance analysis of a syngas-fed gas turbine considering the operating limitations of its components. Appl. Energy 87(5), 1602–1611 (2010)CrossRefGoogle Scholar
  39. 39.
    Woudstra, T., Woudstra, N.: Exergy analysis of hot-gas clean-up in IGCC systems. J. Inst. Energy 68, 157–166 (1995)Google Scholar
  40. 40.
    Satti, S.L., Hassan, M.S., Mahmood, H., Shahbaz, M.: Coal consumption: an alternate energy resource to fuel economic growth in Pakistan. Econ. Model. 36, 282–287 (2014)CrossRefGoogle Scholar
  41. 41.
    Gangwal, S.K., Stogner, J.M., Harkins, S.M., Bossart, S.J.: Testing of novel sorbents for H2S removal from coal gas. Environ. Prog. Sustain. Energy 8(1), 26–34 (1989)Google Scholar
  42. 42.
    Austgen, D.M., Rochelle, G.T., Chen, C.C.: Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of hydrogen sulfide and carbon dioxide solubility in aqueous MDEA and carbon dioxide solubility in aqueous mixtures of MDEA with MEA or DEA. Ind. Eng. Chem. Res. 30(3), 543–555 (1991)CrossRefGoogle Scholar
  43. 43.
    Hiller, H., Schlauer, J., Doerges, A., Kempf, G., Svoboda, V., Zeschmar, W.: Process of regenerating alkali carbonate solutions formed by the desulfurization of hot gases. U.S. Patent No. 4, 258, 019 (1981)Google Scholar
  44. 44.
    Kazusaka, A., Toyoshima, I.: Promoter action of potassium oxide in ammonia synthetic iron catalyst. J. Res. Inst. Catal. Hokkaido Univ. 21(2), 150–156 (1974)Google Scholar
  45. 45.
    Kang, S.C., Jun, H.K., Lee, T.J., Ryu, S.O., Kim, J.C.: The characterization of Zn-based desulfurization sorbents on various supports. Korean Chem. Eng. Res. 40(3), 289–297 (2002)Google Scholar
  46. 46.
    Jun, H.K., Koo, J.H., Lee, T.J., Ryu, S.O., Yi, C.K., Ryu, C.K., Kim, J.C.: A study of Zn-Ti-based H2S removal sorbents promoted with cobalt and nickel oxides. Energy Fuels 18(1), 41–48 (2004)CrossRefGoogle Scholar
  47. 47.
    Govindaraju, V.G.R.C., Tang, C.F.: The dynamic links between CO2 emissions, economic growth and coal consumption in China and India. Appl. Energy 104(2), 310–318 (2013)CrossRefGoogle Scholar
  48. 48.
    Sasaoka, E., Sada, N., Manabe, A., Uddin, M.A., Sakata, Y.: Modification of ZnO-TiO2 high-temperature desulfurization sorbent by ZrO2 addition. Ind. Eng. Chem. Res. 38(3), 958–963 (1999)CrossRefGoogle Scholar
  49. 49.
    Jung, S.Y., Jun, H.K., Lee, S.J., Lee, T.J., Ryu, C.K., Kim, J.C.: Improvement of the desulfurization and regeneration properties through the control of pore structures of the Zn-Ti-based H2S removal sorbents. Environ. Sci. Technol. 39(23), 9324–9330 (2005)CrossRefGoogle Scholar
  50. 50.
    Jun, H.K., Lee, T.J., Kim, J.C.: Role of iron oxide in the promotion of Zn-Ti-based desulfurization sorbents during regeneration at middle temperatures. Ind. Eng. Chem. Res. 41(19), 4733–4738 (2002)CrossRefGoogle Scholar
  51. 51.
    Jothimurugesan, K., Gangwal, S.K.: Regeneration of zinc titanate H2S sorbents. Ind. Eng. Chem. Res. 37(5), 1929–1933 (1998)CrossRefGoogle Scholar
  52. 52.
    Ryu, S.O., Park, N.K., Chang, C.H., Kim, J.C., Lee, T.J.: Multicyclic study on improved Zn/Ti-based desulfurization sorbents in mid-temperature conditions. Ind. Eng. Chem. Res. 43(6), 1466–1471 (2004)CrossRefGoogle Scholar
  53. 53.
    Lee, T.J., Kwon, W.T., Chang, W.C., Kim, J.C.: A study on regeneration of zinc titanate sorbents for H2S removal. Korean J. Chem. Eng. 14(6), 513–518 (1997)CrossRefGoogle Scholar
  54. 54.
    Buelna, G., Lin, Y.S.: Characteristics and desulfurization-regeneration properties of sol-gel-derived copper oxide on alumina sorbents. Sep. Purif. Technol. 39(3), 167–179 (2004)CrossRefGoogle Scholar
  55. 55.
    And, R.B.S., Abbasian, J.: Copper-based sorbents for coal gas desulfurization at moderate temperatures. Ind. Eng. Chem. Res. 39(5), 1338–1344 (2000)CrossRefGoogle Scholar
  56. 56.
    Jung, S.Y., Lee, S.J., Lee, T.J., Ryu, C.K., Kim, J.C.: H2S removal and regeneration properties of Zn-Al-based sorbents promoted with various promoters. Catal. Today 111(3), 217–222 (2006)CrossRefGoogle Scholar
  57. 57.
    Jun, H.K., Jung, S.Y., Lee, T.J., Kim, J.C.: The effect of HCl and H2O on the H2S removing capacities of Zn-Ti-based desulfurization sorbents promoted by cobalt and nickel oxide. Korean J. Chem. Eng. 21(2), 425–429 (2004)CrossRefGoogle Scholar
  58. 58.
    Slimane, R.B., Abbasianb, J.: Utilization of metal oxide-containing waste materials for hot coal gas desulfurization. Fuel Process. Technol. 70(2), 97–113 (2001)CrossRefGoogle Scholar
  59. 59.
    Hepola, J., Simell, P.: Sulphur poisoning of nickel-based hot gas cleaning catalysts in synthetic gasification gas: II. Chemisorption of hydrogen sulphide. Appl. Catal. B Environ. 14(3), 305–321 (1997)Google Scholar
  60. 60.
    Petit, C., Bandosz, T.J.: Removal of Ammonia from air on molybdenum and tungsten oxide modified activated carbons. Environ. Sci. Technol. 42(8), 3033–3039 (2008)CrossRefGoogle Scholar
  61. 61.
    Ayala, R.E.: Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases. U.S. Patent No. 5, 188, 811 (1993)Google Scholar
  62. 62.
    Ng, P.F., Li, L., Wang, S., Zhu, Z., Lu, G., Yan, Z.: Catalytic ammonia decomposition over industrial-waste-supported Ru catalysts. Environ. Sci. Technol. 41(10), 3758–3762 (2007)CrossRefGoogle Scholar
  63. 63.
    Ohtsuka, Y., Xu, C., Kong, D., Tsubouchi, N.: Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel 83(6), 685–692 (2004)CrossRefGoogle Scholar
  64. 64.
    Ismagilov, Z.R., Khairulin, S.R., Shkrabina, R.A., Yashnik, S.A., Ushakov, V.A., Moulijn, J.A., van Langeveld, A.D.: Deactivation of manganese oxide-based honeycomb monolith catalyst under reaction conditions of ammonia decomposition at high temperature. Catal. Today 69(1), 253–257 (2001)CrossRefGoogle Scholar
  65. 65.
    Feitelberg, A.S., Ayala, R.E., Hung, S.L.S., Najewicz, D.J.: Staged catalytic ammonia decomposition in integrated gasification combined cycle systems. U.S. Patent No. 6, 432, 368 (2002)Google Scholar
  66. 66.
    Mojtahedi, W., Abbasian, J.: Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure. Fuel 74(11), 1698–1703 (1995)CrossRefGoogle Scholar
  67. 67.
    Turk, A., Sakalis, E., Lessuck, J., Karamitsos, H., Rago, O.: Ammonia injection enhances capacity of activated carbon for hydrogen sulfide and methyl mercaptan. Environ. Sci. Technol. 23(10), 1242–1245 (1989)CrossRefGoogle Scholar
  68. 68.
    Wang, W., Padban, N., Ye, Z., Andersson, A., Bjerle, I.: Kinetics of ammonia decomposition in hot gas cleaning. Ind. Eng. Chem. Res. 38(11), 4175–4182 (1999)CrossRefGoogle Scholar
  69. 69.
    Hasegawa, T., Sato, M., Nakata, T.: A study of combustion characteristics of gasified coal fuel. ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers (1999)Google Scholar
  70. 70.
    Anderson, G.L., Borders, H.A., Aquino, M.R.: Purification of fuel gases. U.S. Patent No. 4, 374, 105 (1983)Google Scholar
  71. 71.
    Jun, H.K., Jung, S.Y., Lee, T.J., Ryu, C.K., Kim, J.C.: Decomposition of NH3 over Zn-Ti-based desulfurization sorbent promoted with cobalt and nickel. Catal. Today 87(1), 3–10 (2003)CrossRefGoogle Scholar
  72. 72.
    Jung, S.Y., Lee, S.J., Park, J.J., Lee, S.C., Jun, H.K., Lee, T.J., Kim, J.C.: The simultaneous removal of hydrogen sulfide and ammonia over zinc-based dry sorbent supported on alumina. Sep. Purif. Technol. 63(2), 297–302 (2008)CrossRefGoogle Scholar
  73. 73.
    Park, J.J., Park, C.G., Jung, S.Y., Lee, S.C., Ragupathy, D., Kim, J.C.: A study on Zn-based catal-sorbents for the simultaneous removal of hydrogen sulfide and ammonia at high temperature. Res. Chem. Intermed. 37(9), 1193–1202 (2011)CrossRefGoogle Scholar
  74. 74.
    Shozo, K., Ishibashi, Y., Wada, J.: Project status of 250 MW air-blown IGCC demonstration plant. Gasification Technologies Conference. San Francisco, USA (2002)Google Scholar
  75. 75.
    Moioli, S., Giuffrida, A., Romano, M.C., Pellegrini, L.A., Lozza, G.: Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants. Appl. Energy 183, 1452–1470 (2016)CrossRefGoogle Scholar
  76. 76.
    Giuffrida, A., Romano, M.C., Lozza, G.G.: Thermodynamic analysis of air-blown gasification for IGCC applications. Appl. Energy 88(11), 3949–3958 (2011)CrossRefGoogle Scholar
  77. 77.
    Giuffrida, A., Romano, M.C., Lozza, G.G.: Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization. Appl. Energy 87(11), 3374–3383 (2010)CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiang Wu
    • 1
  • Dongjing Liu
    • 2
    • 3
  • Weiguo Zhou
    • 4
  • Qizhen Liu
    • 5
  • Yaji Huang
    • 6
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.College of Mechanical EngineeringTongji UniversityShanghaiChina
  3. 3.Leibniz Institute for Catalysis at University of RostockRostockGermany
  4. 4.College of Mechanical EngineeringTongji UniversityShanghaiChina
  5. 5.Shanghai Environment Monitoring CenterShanghaiChina
  6. 6.School of Energy and EnvironmentSoutheast UniversityNanjingChina

Personalised recommendations