Part of the Springer Theses book series (Springer Theses)


Generally, nanomaterials refer to materials with at least one dimension in the nano-scale range (1–100 nm), or the corresponding aggregates. Nanomaterials have displayed excellent performance in optics, electrics, magnetics and catalysis, and appeared to be a research focus. Designing and constructing functional nanomaterials at molecular level have long been a hot topic, however are facing tremendous challenges. With the advances in engineering and deepened understanding of micro/nano world by some new characterization techniques, it gradually become a reality to construct nanomaterials based on molecular design. Metal–organic frameworks (MOFs), also known as porous coordination polymers (PCPs), microporous coordination polymers (MCPs), or porous coordination networks (PCNs), are a typical example (Rowsell and Yaghi in Microporous Mesoporous Mater 73(1–2):3–14, 2004, [1]). They are a new type of nanoporous materials which have ultra-low density, high surface area and regular pore structure. Compared with the traditional porous materials like active carbons or zeolites, MOFs demonstrate more flexibility in tuning the structure and surface chemistry, making them excellent candidates 222 for the application in gas sorption/separation, catalysis, and sensor (Furukawa et al. in Science 341(6149):1230444, 2013, [2]).


  1. 1.
    Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73(1–2):3–14CrossRefGoogle Scholar
  2. 2.
    Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):1230444CrossRefGoogle Scholar
  3. 3.
    James SL (2003) Metal–organic frameworks. Chem Soc Rev 32(5):276–288CrossRefGoogle Scholar
  4. 4.
    Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759):276–279CrossRefGoogle Scholar
  5. 5.
    Chui SS, Lo SM, Charmant JP et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150CrossRefGoogle Scholar
  6. 6.
    Howarth A J, Liu Y, Li P et al (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 15018Google Scholar
  7. 7.
    Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042CrossRefGoogle Scholar
  8. 8.
    Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518CrossRefGoogle Scholar
  9. 9.
    Dietzel PDC, Morita Y, Blom R et al (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44(39):6354–6358CrossRefGoogle Scholar
  10. 10.
    Dietzel PDC, Panella B, Hirscher M et al (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961CrossRefGoogle Scholar
  11. 11.
    Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871CrossRefGoogle Scholar
  12. 12.
    Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269CrossRefGoogle Scholar
  13. 13.
    Bhattacharjee S, Choi J-S, Yang S-T et al (2010) Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J Nanosci Nanotechnol 10(1):135–141CrossRefGoogle Scholar
  14. 14.
    Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191CrossRefGoogle Scholar
  15. 15.
    Denysenko D, Grzywa M, Tonigold M et al (2011) Elucidating gating effects for hydrogen sorption in mfu-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem Eur J 17(6):1837–1848CrossRefGoogle Scholar
  16. 16.
    Lin X, Telepeni I, Blake AJ et al (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171CrossRefGoogle Scholar
  17. 17.
    Yuan D, Zhao D, Sun D et al (2010) An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49(31):5357–5361CrossRefGoogle Scholar
  18. 18.
    Zheng B, Bai J, Duan J et al (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133(4):748–751CrossRefGoogle Scholar
  19. 19.
    Park HJ, Lim D-W, Yang WS et al (2011) A highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem Eur J 17(26):7251–7260CrossRefGoogle Scholar
  20. 20.
    Ojha RP, Lemieux PA, Dixon PK et al (2004) Statistical mechanics of a gas-fluidized particle. Nature 427(6974):521–523CrossRefGoogle Scholar
  21. 21.
    Yan Y, Lin X, Yang S et al (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 9:1025–1027CrossRefGoogle Scholar
  22. 22.
    Wang Z, Tanabe KK, Cohen SM (2010) Tuning hydrogen sorption properties of metal–organic frameworks by postsynthetic covalent modification. Chem Eur J 16(1):212–217CrossRefGoogle Scholar
  23. 23.
    Sumida K, Hill MR, Horike S et al (2009) Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J Am Chem Soc 131(42):15120–15121CrossRefGoogle Scholar
  24. 24.
    Koh K, Wong-Foy AG, Matzger AJ (2008) A crystalline mesoporous coordination copolymer with high microporosity. Angew Chem Int Ed 47(4):677–680CrossRefGoogle Scholar
  25. 25.
    An J, Farha OK, Hupp JT et al (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat Commun 3:604CrossRefGoogle Scholar
  26. 26.
    Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal–organic frameworks. Science 329(5990):424–428CrossRefGoogle Scholar
  27. 27.
    Yan Y, Telepeni I, Yang S et al (2010) Metal–organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J Am Chem Soc 132(12):4092–4094CrossRefGoogle Scholar
  28. 28.
    Klein N, Senkovska I, Baburin IA et al (2011) Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem Eur J 17(46):13007–13016CrossRefGoogle Scholar
  29. 29.
    Koh K, Wong-Foy AG, Matzger AJ (2009) A porous coordination copolymer with over 5000 m2/g BET Surface Area. J Am Chem Soc 131(12):4184–4185CrossRefGoogle Scholar
  30. 30.
    Farha OK, Özgür Yazaydın A, Eryazici I et al (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948CrossRefGoogle Scholar
  31. 31.
    Farha OK, Eryazici I, Jeong NC et al (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021CrossRefGoogle Scholar
  32. 32.
    Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295(5554):469–472CrossRefGoogle Scholar
  33. 33.
    Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal–organic frameworks. Science 300(5622):1127–1129CrossRefGoogle Scholar
  34. 34.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128(4):1304–1315CrossRefGoogle Scholar
  35. 35.
    Deng H, Grunder S, Cordova KE et al (2012) Large-pore apertures in a series of metal–organic frameworks. Science 336(6084):1018–1023CrossRefGoogle Scholar
  36. 36.
    Brozek CK, Dinca M (2013) Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J Am Chem Soc 135(34):12886–12891CrossRefGoogle Scholar
  37. 37.
    Lee Y, Kim S, Kang JK et al (2015) Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem Commun 51(26):5735–5738CrossRefGoogle Scholar
  38. 38.
    Liu X, Li Y, Ban Y et al (2013) Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem Commun 49(80):9140–9142CrossRefGoogle Scholar
  39. 39.
    Ni Z, Masel RI (2006) Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128(38):12394–12395CrossRefGoogle Scholar
  40. 40.
    Dey C, Kundu T, Biswal BP et al (2014) Crystalline metal–organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 70(Pt 1):3–10CrossRefGoogle Scholar
  41. 41.
    Lee Y-R, Kim J, Ahn W-S (2013) Synthesis of metal–organic frameworks: a mini review. Korean J Chem Eng 30(9):1667–1680CrossRefGoogle Scholar
  42. 42.
    Yang D-A, Cho H-Y, Kim J et al (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5(4):6465–6473CrossRefGoogle Scholar
  43. 43.
    Lin JB, Lin RB, Cheng XN et al (2011) Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem Commun 47(32):9185–9187CrossRefGoogle Scholar
  44. 44.
    Beldon PJ, Fabian L, Stein RS et al (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed 49(50):9640–9643CrossRefGoogle Scholar
  45. 45.
    Mueller U, Hesse M, Lobree L et al (2005) Method for electrochemical production of a crystalline porous metal organic skeleton material. WO2005/049892Google Scholar
  46. 46.
    Mueller U, Schubert M, Teich F et al (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16(7):626–636CrossRefGoogle Scholar
  47. 47.
    Kaye SS, Dailly A, Yaghi OM et al (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177CrossRefGoogle Scholar
  48. 48.
    Ma S, Sun D, Simmons JM et al (2008) Metal–organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016CrossRefGoogle Scholar
  49. 49.
    Bloch ED, Queen WL, Krishna R et al (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335(6076):1606–1610CrossRefGoogle Scholar
  50. 50.
    Kornienko N, Zhao Y, Kley CS et al (2015) Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135CrossRefGoogle Scholar
  51. 51.
    Liang K, Carbonell C, Styles MJ et al (2015) Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater 27(45):7293–7298CrossRefGoogle Scholar
  52. 52.
    Liao C, Zuo Y, Zhang W et al (2012) Electrochemical performance of metal–organic framework synthesized by a solvothermal method for supercapacitors. Russ J Electrochem 49(10):983–986CrossRefGoogle Scholar
  53. 53.
    Nagao Y, Fujishima M, Ikeda R et al (2003) Highly proton-conductive copper coordination polymers. Synth Met 133–134:431–432CrossRefGoogle Scholar
  54. 54.
    Nagarkar SS, Unni SM, Sharma A et al (2014) Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal–organic framework. Angew Chem Int Ed 53(10):2638–2642CrossRefGoogle Scholar
  55. 55.
    O̅kawa H, Shigematsu A, Sadakiyo M et al (2009) Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M=MnII, FeII, CoII; NH(prol)3+= tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J Am Chem Soc 131(37):13516–13522Google Scholar
  56. 56.
    Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968CrossRefGoogle Scholar
  57. 57.
    Liu B, Shioyama H, Akita T et al (2008) Metal–organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391CrossRefGoogle Scholar
  58. 58.
    Yang SJ, Kim T, Im JH et al (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24(3):464–470CrossRefGoogle Scholar
  59. 59.
    Hu M, Reboul J, Furukawa S et al (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134(6):2864–2867CrossRefGoogle Scholar
  60. 60.
    Aiyappa HB, Pachfule P, Banerjee R et al (2013) Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst Growth Des 13(10):4195–4199CrossRefGoogle Scholar
  61. 61.
    Amali AJ, Hoshino H, Wu C et al (2014) From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem Eur J 20(27):8279–8282CrossRefGoogle Scholar
  62. 62.
    Chen L, Bai J, Wang C et al (2008) One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chem Commun 13:1581–1583CrossRefGoogle Scholar
  63. 63.
    Zhang P, Sun F, Xiang Z et al (2014) ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci 7(1):442–450CrossRefGoogle Scholar
  64. 64.
    Xu X, Cao R, Jeong S et al (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12(9):4988–4991CrossRefGoogle Scholar
  65. 65.
    Shi H-Y, Deng B, Zhong S-L et al (2011) Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(ii)-organic coordination polymers. J Mater Chem 21(33):12309–12315CrossRefGoogle Scholar
  66. 66.
    Cao X, Zheng B, Rui X et al (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew Chem Int Ed 53(5):1404–1409CrossRefGoogle Scholar
  67. 67.
    Kundu T, Sahoo SC, Banerjee R (2012) Solid-state thermolysis of anion induced metal–organic frameworks to ZnO microparticles with predefined morphologies: facile synthesis and solar cell studies. Cryst Growth Des 12(5):2572–2578CrossRefGoogle Scholar
  68. 68.
    Zhao J, Li M, Sun J et al (2012) Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors. Chem Eur J 18(11):3163–3168CrossRefGoogle Scholar
  69. 69.
    Jung S, Cho W, Lee HJ et al (2009) Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew Chem Int Ed 48(8):1459–1462CrossRefGoogle Scholar
  70. 70.
    Wu R, Qian X, Yu F et al (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem A 1(37):11126–11129CrossRefGoogle Scholar
  71. 71.
    Cho W, Lee YH, Lee HJ et al (2009) Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology. Chem Commun 31:4756–4758CrossRefGoogle Scholar
  72. 72.
    Zhang L, Wu HB, Madhavi S et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J Am Chem Soc 134(42):17388–17391CrossRefGoogle Scholar
  73. 73.
    Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50(79):11717–11720CrossRefGoogle Scholar
  74. 74.
    Tahmasian A, Morsali A (2012) Ultrasonic synthesis of a 3D Ni(II) metal–organic framework at ambient temperature and pressure: new precursor for synthesis of nickel(II) oxide nano-particles. Inorg Chim Acta 387:327–331CrossRefGoogle Scholar
  75. 75.
    Parast MSY, Morsali A (2011) Synthesis and characterization of porous Al(III) metal–organic framework nanoparticles as a new precursor for preparation of Al2O3 nanoparticles. Inorg Chem Commun 14(5):645–648CrossRefGoogle Scholar
  76. 76.
    Zhang F, Bei F, Cao J et al (2008) The preparation of CdO nanowires from solid-state transformation of a layered metal–organic framework. J Solid State Chem 181(1):143–149CrossRefGoogle Scholar
  77. 77.
    Liu K, You H, Jia G et al (2009) Coordination-induced formation of one-dimensional nanostructures of Europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9(8):3519–3524CrossRefGoogle Scholar
  78. 78.
    Hu L, Zhang P, Sun Y et al (2013) ZnO/Co3O4 porous nanocomposites derived from mofs: room-temperature ferromagnetism and high catalytic oxidation of CO. ChemPhysChem 14(17):3953–3959CrossRefGoogle Scholar
  79. 79.
    Zhang L, Shi L, Huang L et al (2014) Rational design of high-performance DeNOx catalysts based on MnxCo3−xO4 nanocages derived from metal–organic frameworks. ACS Catal 4(6):1753–1763CrossRefGoogle Scholar
  80. 80.
    Yang SJ, Nam S, Kim T et al (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J Am Chem Soc 135(20):7394–7397CrossRefGoogle Scholar
  81. 81.
    Das R, Pachfule P, Banerjee R et al (2012) Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale 4(2):591–599CrossRefGoogle Scholar
  82. 82.
    Chaikittisilp W, Torad NL, Li C et al (2014) Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem Eur J 20(15):4217–4221CrossRefGoogle Scholar
  83. 83.
    Santos VP, Wezendonk TA, Jaen JJ et al (2015) Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat Commun 6:6451CrossRefGoogle Scholar
  84. 84.
    Zhang P, Wang X, Wang W et al (2015) Synthesis and magnetism of epsilon-Fe3N submicrorods for magnetic resonance imaging. Dalton Trans 45(1):296–299CrossRefGoogle Scholar
  85. 85.
    Wang T, Zhou Q, Wang X et al (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3(32):16435–16439CrossRefGoogle Scholar
  86. 86.
    Yin D, Huang G, Zhang F et al (2016) Coated/sandwiched rGO/CoSx composites derived from metal–organic frameworks/GO as advanced anode materials for lithium-ion batteries. Chem Eur J 22(4):1467–1474CrossRefGoogle Scholar
  87. 87.
    Hu H, Han L, Yu M et al (2016) Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci 9(1):107–111CrossRefGoogle Scholar
  88. 88.
    Liu X, Ai L, Jiang J (2015) Interconnected porous hollow CuS microspheres derived from metal–organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol 283:539–548CrossRefGoogle Scholar
  89. 89.
    Jiang Z, Sun H, Qin Z et al (2012) Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template. Chem Commun 48(30):3620–3622CrossRefGoogle Scholar
  90. 90.
    Yu XY, Yu L, Wu HB et al (2015) Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed 54(18):5331–5335CrossRefGoogle Scholar
  91. 91.
    Wu R, Wang DP, Kumar V et al (2015) MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem Commun 51(15):3109–3112CrossRefGoogle Scholar
  92. 92.
    Chen B, Li R, Ma G et al (2015) Cobalt sulfide/N, S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7(48):20674–20684CrossRefGoogle Scholar
  93. 93.
    You B, Jiang N, Sheng M et al (2015) High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem Mater 27(22):7636–7642CrossRefGoogle Scholar
  94. 94.
    Tian T, Ai L, Jiang J (2015) Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Adv 5(14):10290–10295CrossRefGoogle Scholar
  95. 95.
    Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261CrossRefGoogle Scholar
  96. 96.
    Wang Q, Xia W, Guo W et al (2013) Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. Chem Asian J 8(8):1879–1885Google Scholar
  97. 97.
    Amali AJ, Sun J-K, Xu Q (2014) From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun 50(13):1519–1522CrossRefGoogle Scholar
  98. 98.
    Jeon J-W, Sharma R, Meduri P et al (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6(10):7214–7222CrossRefGoogle Scholar
  99. 99.
    Zhang P, Sun F, Shen Z et al (2014) ZIF-derived porous carbon: a promising supercapacitor electrode material. J Mater Chem A 2(32):12873–12880CrossRefGoogle Scholar
  100. 100.
    Torad NL, Salunkhe RR, Li Y et al (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Eur J 20(26):7895–7900CrossRefGoogle Scholar
  101. 101.
    Yan X, Li X, Yan Z et al (2014) Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl Surf Sci 308:306–310CrossRefGoogle Scholar
  102. 102.
    Zhang F, Hao L, Zhang L et al (2011) Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal–organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954Google Scholar
  103. 103.
    Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat Commun 5:5261CrossRefGoogle Scholar
  104. 104.
    Yang X, Yan N, Zhou W et al (2015) Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium-sulfur batteries. J Mater Chem A 3(29):15314–15323CrossRefGoogle Scholar
  105. 105.
    Wang Z, Li X, Xu H et al (2014) Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J Mater Chem A 2(31):12571–12575CrossRefGoogle Scholar
  106. 106.
    Hu L, Yan N, Chen Q et al (2012) Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem Eur J 18(29):8971–8977CrossRefGoogle Scholar
  107. 107.
    Yuan C, Wu HB, Xie Y et al (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504CrossRefGoogle Scholar
  108. 108.
    Hu L, Zhang P, Zhong H et al (2012) Foamlike porous spinel MnxCo3−xO4 material derived from Mn3[Co(CN)6]2·nH2O nanocubes: a highly efficient anode material for lithium batteries. Chem Eur J 18(47):15049–15056CrossRefGoogle Scholar
  109. 109.
    Huang G, Zhang F, Zhang L et al (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048CrossRefGoogle Scholar
  110. 110.
    Li M, Wang W, Yang M et al (2015) Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Advances 5(10):7356–7362CrossRefGoogle Scholar
  111. 111.
    Hou Y, Li J, Wen Z et al (2015) Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12:1–8CrossRefGoogle Scholar
  112. 112.
    Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26(38):6622–6628CrossRefGoogle Scholar
  113. 113.
    Wu R, Wang DP, Rui X et al (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27(19):3038–3044CrossRefGoogle Scholar
  114. 114.
    Fu Y, Zhang Z, Yang X et al (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5(106):86941–86944CrossRefGoogle Scholar
  115. 115.
    Wang Z, Li X, Yang Y et al (2014) Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J Mater Chem A 2(21):7912CrossRefGoogle Scholar
  116. 116.
    Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, ChichesterGoogle Scholar
  117. 117.
    Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566CrossRefGoogle Scholar
  118. 118.
    Gasteiger H A, Panels J E, Yan S G (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1–2):162–171CrossRefGoogle Scholar
  119. 119.
    Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201(4925):1212–1213CrossRefGoogle Scholar
  120. 120.
    Maldonado S, Stevenson KJ (2004) Direct preparation of carbon nanofiber electrodes via pyrolysis of Iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction. J Phys Chem B 108(31):11375–11383CrossRefGoogle Scholar
  121. 121.
    Wu G, More KL, Johnston CM et al (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447CrossRefGoogle Scholar
  122. 122.
    Bezerra CWB, Zhang L, Liu H et al (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173(2):891–908CrossRefGoogle Scholar
  123. 123.
    Ma S, Goenaga GA, Call AV et al (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem Eur J 17(7):2063–2067CrossRefGoogle Scholar
  124. 124.
    Bai F, Huang H, Hou C et al (2016) Porous carbon-coated cobalt sulfide nanocomposites derived from metal organic frameworks (MOFs) as an advanced oxygen reduction electrocatalyst. New J Chem 40(2):1679–1684CrossRefGoogle Scholar
  125. 125.
    Kong A, Lin Q, Mao C et al (2014) Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium-MOF. Chem Commun 50(98):15619–15622CrossRefGoogle Scholar
  126. 126.
    Xia W, Zhu J, Guo W et al (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2(30):11606–11613CrossRefGoogle Scholar
  127. 127.
    Zhang L, Su Z, Jiang F et al (2014) Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12):6590–6602CrossRefGoogle Scholar
  128. 128.
    Zhao Y, Zhang J, Han B et al (2011) Metal–organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50(3):636–639CrossRefGoogle Scholar
  129. 129.
    Aijaz A, Fujiwara N, Xu Q (2014) From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136(19):6790–6793CrossRefGoogle Scholar
  130. 130.
    Li J, Chen Y, Tang Y et al (2014) Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J Mater Chem A 2(18):6316–6319CrossRefGoogle Scholar
  131. 131.
    Li J-S, Li S-L, Tang Y-J et al (2014) Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci Rep 4:5130CrossRefGoogle Scholar
  132. 132.
    Lefèvre M, Proietti E, Jaouen F et al (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74CrossRefGoogle Scholar
  133. 133.
    Proietti E, Jaouen F, Lefèvre M et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416CrossRefGoogle Scholar
  134. 134.
    Ma T, Dai S, Jaroniec M et al (2014) J Am Chem Soc 136(39):13925–13931CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Wei Xia
    • 1
  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations