Advertisement

Advantages, Disadvantages and Modifications of Conventional ELISA

  • Samira HosseiniEmail author
  • Patricia Vázquez-Villegas
  • Marco Rito-Palomares
  • Sergio O. Martinez-Chapa
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Nowadays ELISA is considered to be the troy horse for the routine clinical practice. This widely applied technique offers specific detection of a wide variety of target analytes in different kinds of samples. Since the invention of the technique four decades ago, ELISA has rapidly found various applications in food quality, environmental, biotechnological, and chemical disciplines among others. In spite of its many advantages, ELISA has certain limitations such as tedious/laborious assay procedure, and insufficient level of sensitivity in bio-recognition of challenging biomolecular entities such as microRNAs. A great number of research works has shown valuable attempts in addressing such shortages of ELISA through modification strategies. This chapter is dedicated to reviewing some of the main promising alternatives to the traditional ELISA. Paper- and fiber-based ELISAs, have shown great potentials for point-of-care (POC) applications due to their cost-effectiveness. Miniaturization of ELISA within micro-devices has increased the number and type of samples that can be analyzed, while much lower sample volume is required. Multiplexing was obtained as a result of micro and nano fabrication strategies and the integration of the assay within lab-on-chip (LOC) and lab-on-compact-disk (LOCD) devices. Taking advantage from a significantly vast surface area of the spheres, ultra-sensitive diagnosis was achieved by using micro-/nano-particles with different optical proprieties, sizes, synthetic variables and compositions. ELISA on the spot made possible to measure the biomolecules in vitro. Plasmonic ELISA offered detection strategies even with the aim of the naked eyes. Finally, the digital era has opened new windows of opportunity for ELISA, as the results of immunoassays can be recorded in remote/rural areas and subsequently analyzed by digital technologies or in centralized laboratories via mass data transfer.

References

  1. 1.
    Lai S, Wang S, Luo J, Lee LJ, Yang S-T, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837CrossRefGoogle Scholar
  2. 2.
    Pruslin FH, To SE, Winston R, Rodman TC (1991) Caveats and suggestions for the ELISA. J Immunol Methods 137:27–35CrossRefGoogle Scholar
  3. 3.
    Mikulskis A, Yeung D, Subramanyam M, Amaravadi L (2011) Solution ELISA as a platform of choice for development of robust, drug tolerant immunogenicity assays in support of drug development. J Immunol Methods 365:38–49CrossRefGoogle Scholar
  4. 4.
    Satija J, Punjabi N, Mishra D, Mukherji S (2016) Plasmonic-ELISA: expanding horizons. RSC Advances 6:85440–85456CrossRefGoogle Scholar
  5. 5.
    Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A et al (2006) Requirements for high impact diagnostics in the developing world. Nature 444:73–79CrossRefGoogle Scholar
  6. 6.
    Tighe PJ, Ryder RR, Todd I, Fairclough LC (2015) ELISA in the multiplex era: potentials and pitfalls. PROTEOMICS-Clin Appl 9:406–422CrossRefGoogle Scholar
  7. 7.
    Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R et al (2015) Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection. Sci Rep 5Google Scholar
  8. 8.
    Hosseini S, Ibrahim F, Djordjevic I, Koole LH (2014) Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 139:2933–2943CrossRefGoogle Scholar
  9. 9.
    Hosseini S, Ibrahim F, Djordjevic I, Koole LH (2014) Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: a novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices. Appl Surf Sci 300:43–50CrossRefGoogle Scholar
  10. 10.
    Hosseini S, Ibrahim F, Rothan HA, Yusof R, Cvd Marel, Djordjevic I et al (2015) Aging effect and antibody immobilization on –COOH exposed surfaces designed for dengue virus detection. Biochem Eng J 99:183–192CrossRefGoogle Scholar
  11. 11.
    Hosseini S, Ibrahim F, Djordjevic I, Rothan HA, Yusof R, van der Mareld C et al (2014) Synthesis and processing of ELISA polymer substitute: the influence of surface chemistry and morphology on detection sensitivity. Appl Surf Sci 317:630–638CrossRefGoogle Scholar
  12. 12.
    Czerkinsky CC, Nilsson L-Å, Nygren H, Ouchterlony Ö, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65:109–121CrossRefGoogle Scholar
  13. 13.
    Sedgwick J, Holt P (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57:301–309CrossRefGoogle Scholar
  14. 14.
    Franci C, Inglés J, Castro R, Vidal J (1986) Further studies on the ELISA-spot technique: its application to particulate antigens and a potential improvement in sensitivity. J Immunol Methods 88:225–232CrossRefGoogle Scholar
  15. 15.
    Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L, Ronquillo R et al (2003) Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Methods 283:141–153CrossRefGoogle Scholar
  16. 16.
    Chiriva-Internati M, Yu Y, Mirandola L, Jenkins MR, Chapman C, Cannon M et al (2010) Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS ONE 5:e10471CrossRefGoogle Scholar
  17. 17.
    Gulley JL, Arlen PM, Madan RA, Tsang K-Y, Pazdur MP, Skarupa L et al (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59:663–674CrossRefGoogle Scholar
  18. 18.
    Hadaschik B, Su Y, Huter E, Ge Y, Hohenfellner M, Beckhove P (2012) Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer. J Urol 187:1458–1465CrossRefGoogle Scholar
  19. 19.
    Alix-Panabières C (2012) EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Minimal residual disease and circulating tumor cells in breast cancer. Springer, Berlin, pp 69–76CrossRefGoogle Scholar
  20. 20.
    Leibowitz MS, Srivastava RM, Andrade Filho PA, Egloff AM, Wang L, Seethala RR et al (2013) SHP2 is overexpressed and inhibits pSTAT1-mediated APM component expression, T-cell attracting chemokine secretion, and CTL recognition in head and neck cancer cells. Clin Cancer Res 19:798–808CrossRefGoogle Scholar
  21. 21.
    Ahlborg N, Axelsson B (2012) Dual-and triple-color fluorospot. Handbook of ELISPOT: methods and protocols, 77–85Google Scholar
  22. 22.
    Guo L, Xu S, Ma X, Qiu B, Lin Z, Chen G (2016) Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles. Sci Rep 6:32755CrossRefGoogle Scholar
  23. 23.
    De La Rica R, Stevens MM (2013) Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc 8:1759CrossRefGoogle Scholar
  24. 24.
    Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q et al (2015) Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron 69:128–134CrossRefGoogle Scholar
  25. 25.
    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y (1997) Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal Chem 69:1492–1495CrossRefGoogle Scholar
  26. 26.
    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  27. 27.
    Stuart D, Haes A, Yonzon C, Hicks E, Van Duyne R (2005) Biological applications of localised surface plasmonic phenomenae. IEE Proceedings-Nanobiotechnology: IET, pp 13–32Google Scholar
  28. 28.
    Carey PR (1998) Resonance Raman labels and Raman labels. J Raman Spectrosc 29:861–868CrossRefGoogle Scholar
  29. 29.
    Docherty FT, Clark M, McNay G, Graham D, Smith WE (2004) Multiple labelled nanoparticles for bio detection. Faraday Discuss 126:281–288CrossRefGoogle Scholar
  30. 30.
    Hosseini S, Ibrahim F, Djordjevic I, Rothan HA, Yusof R, Cvd Marel et al (2014) Synthesis and characterization of methacrylic microspheres for biomolecular recognition: ultrasensitive biosensor for dengue virus detection. Eur Polym J 60:14–21CrossRefGoogle Scholar
  31. 31.
    Raez J, Blais DR, Zhang Y, Alvarez-Puebla RA, Bravo-Vasquez JP, Pezacki JP et al (2007) Spectroscopically encoded microspheres for antigen biosensing. Langmuir 23:6482–6485CrossRefGoogle Scholar
  32. 32.
    Dai H, Zhu J, Yang Z, Li J, Jiao XA, Hu X et al (2013) A paramagnetic microspheres based automation-friendly rapid chemiluminescent immunoassay method for sensitive detection of chicken interferon-[gamma]. Chem Commun 49:1708–1710CrossRefGoogle Scholar
  33. 33.
    Li X, Zang B, Li W, Lei X, Fan X, Tian L, Zhang H, Zhang Q (2014) Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosens Bioelectron 51:261–267Google Scholar
  34. 34.
    Grinyte R, Barroso J, Möller M, Saa L, Pavlov V (2016) Microbead QD-ELISA: microbead ELISA using biocatalytic formation of quantum dots for ultra high sensitive optical and electrochemical detection. ACS Appl Mater Interfaces 8:29252–29260CrossRefGoogle Scholar
  35. 35.
    Qu Z, Xu H, Xu P, Chen K, Mu R, Fu J et al (2014) Ultrasensitive ELISA using enzyme-loaded nanospherical brushes as labels. Anal Chem 86:9367–9371CrossRefGoogle Scholar
  36. 36.
    Sobrova P, Ryvolova M, Hubalek J, Adam V, Kizek R (2013) Voltammetry as a tool for characterization of CdTe quantum dots. Int J Mol Sci 14:13497–13510CrossRefGoogle Scholar
  37. 37.
    Krejcova L, Hynek D, Kopel P, Rodrigo MAM, Tmejova K, Trnkova L et al (2013) Quantum dots for electrochemical labelling of neuramidinase genes of H5N1, H1N1 and H3N2 influenza. Int J Electrochem Sci 8:4457–4471Google Scholar
  38. 38.
    Zhou J, Huang H, Xuan J, Zhang J, Zhu J-J (2010) Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP. Biosens Bioelectron 26:834–840CrossRefGoogle Scholar
  39. 39.
    Pinwattana K, Wang J, Lin C-T, Wu H, Du D, Lin Y et al (2010) CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin. Biosens Bioelectron 26:1109–1113CrossRefGoogle Scholar
  40. 40.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2014) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41CrossRefGoogle Scholar
  41. 41.
    Yetisen AK, Akram MS, Lowe CR (2013) Based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251CrossRefGoogle Scholar
  42. 42.
    Ahmed S, Bui MPN, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263CrossRefGoogle Scholar
  43. 43.
    Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R et al (2015) Polymethacrylate coated electrospun PHB fibers: an exquisite outlook for fabrication of paper-based biosensors. Biosens Bioelectron 69:257–264CrossRefGoogle Scholar
  44. 44.
    Hosseini S, Azari P, Aeinehvand MM, Rothan HA, Djordjevic I, Martinez-Chapa SO et al (2016) Intrant ELISA: a novel approach to fabrication of electrospun fiber Mat-assisted biosensor platforms and their integration within standard analytical well plates. Applied Sciences 6:336CrossRefGoogle Scholar
  45. 45.
    Gribnau T, Leuvering J, Van Hell H (1986) Particle-labelled immunoassays: a review. J Chromatogr B Biomed Sci Appl 376:175–189CrossRefGoogle Scholar
  46. 46.
    Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRefGoogle Scholar
  47. 47.
    Free AH, Adams EC, Kercher ML, Free HM, Cook MH (1957) Simple specific test for urine glucose. Clin Chem 3:163–168Google Scholar
  48. 48.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci 76:4350–4354CrossRefGoogle Scholar
  49. 49.
    A Timeline of Pregnancy Testing hhng, exhibits/thinblueline/timeline.html AM, 2013Google Scholar
  50. 50.
    Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17:351–366CrossRefGoogle Scholar
  51. 51.
    Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392CrossRefGoogle Scholar
  52. 52.
    Nie J, Zhang Y, Lin L, Zhou C, Li S, Zhang L et al (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84:6331–6335CrossRefGoogle Scholar
  53. 53.
    Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500CrossRefGoogle Scholar
  54. 54.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095CrossRefGoogle Scholar
  55. 55.
    Schilling KM, Lepore AL, Kurian JA, Martinez AW (2012) Fully enclosed microfluidic paper-based analytical devices. Anal Chem 84:1579–1585CrossRefGoogle Scholar
  56. 56.
    Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85:2587–2593CrossRefGoogle Scholar
  57. 57.
    Zhang A, Zha Y (2012) Fabrication of paper-based microfluidic device using printed circuit technology. AIP Adv 2:022171CrossRefGoogle Scholar
  58. 58.
    Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934CrossRefGoogle Scholar
  59. 59.
    He Y, Wu Y, Fu J-Z, Wu W-B (2015) Fabrication of paper-based microfluidic analysis devices: a review. Rsc Advances 5:78109–78127CrossRefGoogle Scholar
  60. 60.
    Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82:10246–10250CrossRefGoogle Scholar
  61. 61.
    Fenton EM, Mascarenas MR, López GP, Sibbett SS (2008) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129CrossRefGoogle Scholar
  62. 62.
    Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138:671–676CrossRefGoogle Scholar
  63. 63.
    Spicar-Mihalic P, Toley B, Houghtaling J, Liang T, Yager P, Fu E (2013) CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J Micromech Microeng 23:067003CrossRefGoogle Scholar
  64. 64.
    Haller PD, Flowers CA, Gupta M (2011) Three-dimensional patterning of porous materials using vapor phase polymerization. Soft Matter 7:2428–2432CrossRefGoogle Scholar
  65. 65.
    Demirel G, Babur E (2014) Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst 139:2326–2331CrossRefGoogle Scholar
  66. 66.
    Chen B, Kwong P, Gupta M (2013) Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices. ACS Appl Mater Interfaces 5:12701–12707CrossRefGoogle Scholar
  67. 67.
    Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM (2009) Paper microzone plates. Anal Chem 81:5990–5998CrossRefGoogle Scholar
  68. 68.
    He Q, Ma C, Hu X, Chen H (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem 85:1327–1331CrossRefGoogle Scholar
  69. 69.
    He Y, Wu W, Fu J (2015) Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv 5:2694–2701CrossRefGoogle Scholar
  70. 70.
    OuYang L, Wang C, Du F, Zheng T, Liang H (2014) Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography. RSC Adv 4:1093–1101CrossRefGoogle Scholar
  71. 71.
    Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, Kuusipalo J et al (2014) Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl Mater Interfaces 6:20060–20066CrossRefGoogle Scholar
  72. 72.
    Sones C, Katis I, He P, Mills B, Namiq M, Shardlow P et al (2014) Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab Chip 14:4567–4574CrossRefGoogle Scholar
  73. 73.
    Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82CrossRefGoogle Scholar
  74. 74.
    Reukov V, Vertegel A, Burtovyy O, Kornev K, Luzinov I, Miller P (2009) Fabrication of nanocoated fibers for self-diagnosis of bacterial vaginosis. Mater Sci Eng, C 29:669–673CrossRefGoogle Scholar
  75. 75.
    Farahmand E, Ibrahim F, Hosseini S, Rothan HA, Yusof R, Koole LH et al (2015) A novel approach for application of nylon membranes in the biosensing domain. Appl Surf Sci 353:1310–1319CrossRefGoogle Scholar
  76. 76.
    Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–1249CrossRefGoogle Scholar
  77. 77.
    Gong MM, Sinton D (2017) Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev 117:8447–8480CrossRefGoogle Scholar
  78. 78.
    Cunningham DD (2001) Fluidics and sample handling in clinical chemical analysis. Anal Chim Acta 429:1–18CrossRefGoogle Scholar
  79. 79.
    Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77:774–789CrossRefGoogle Scholar
  80. 80.
    Mahmood T, Yang P-C (2012) Western blot: technique, theory, and trouble shooting. North Am J Med Sci 4:429CrossRefGoogle Scholar
  81. 81.
    Wang S, Ge L, Song X, Yu J, Ge S, Huang J et al (2012) Based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218CrossRefGoogle Scholar
  82. 82.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E et al (2010) Paper-based ELISA. Angew Chem Int Ed 49:4771–4774CrossRefGoogle Scholar
  83. 83.
    Chan SK, Lim TS (2016) A straw-housed paper-based colorimetric antibody–antigen sensor. Anal Methods 8:1431–1436CrossRefGoogle Scholar
  84. 84.
    Mahmud MA, Blondeel EJM, Kaddoura M, MacDonald BD (2016) Creating compact and microscale features in paper-based devices by laser cutting. Analyst 141:6449–6454CrossRefGoogle Scholar
  85. 85.
    Lai Y-T, Tsai J-S, Hsu J-C, Lu Y-W (2017) Automated paper-based devices by microfluidic timing-valve for competitive ELISA. Micro Electro Mechanical Systems (MEMS). In: 2017 IEEE 30th international conference on IEEE, pp 1321–1324Google Scholar
  86. 86.
    Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135CrossRefGoogle Scholar
  87. 87.
    Friedman H, Miller B, Meiser C Jr (1985) Influence of preadsorbed water on chromatographic detention of organic volatiles by cellulosic substrates. Text Res J 55:726–732CrossRefGoogle Scholar
  88. 88.
    Marcus RK (2009) Use of polymer fiber stationary phases for liquid chromatography separations: part II–applications. J Sep Sci 32:695–705Google Scholar
  89. 89.
    Grigoryev A, Sa V, Gopishetty V, Tokarev I, Kornev KG, Minko S (2013) Wet-spun stimuli-responsive composite fibers with tunable electrical conductivity. Adv Funct Mater 23:5903–5909CrossRefGoogle Scholar
  90. 90.
    Le Goff A, Holzinger M, Cosnier S (2011) Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 136:1279–1287CrossRefGoogle Scholar
  91. 91.
    Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L et al (2003) Carbon nanotube-based biosensor. Adv Mater 15:1184–1187CrossRefGoogle Scholar
  92. 92.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRefGoogle Scholar
  93. 93.
    Baptista FR, Belhout S, Giordani S, Quinn S (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44:4433–4453CrossRefGoogle Scholar
  94. 94.
    Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636CrossRefGoogle Scholar
  95. 95.
    Tseng H-C, Lee A-W, Wei P-L, Chang Y-J, Chen J-K (2016) Clinical diagnosis of colorectal cancer using electrospun triple-blend fibrous mat-based capture assay of circulating tumor cells. J Mater Chem B 4:6565–6580CrossRefGoogle Scholar
  96. 96.
    Steckl A, Wu D, Han D (2010) Immunoassay on free-standing electrospun membranes. APS Meeting AbstractsGoogle Scholar
  97. 97.
    Cho E, Kim C, Kook J-K, Jeong YI, Kim JH, Kim YA et al (2012) Fabrication of electrospun PVDF nanofiber membrane for Western blot with high sensitivity. J Membr Sci 389:349–354CrossRefGoogle Scholar
  98. 98.
    Hosseini S, Azari P, Jiménez-Moreno MF, Rodriguez-Garcia A, Pingguan-Murphy B, Madou MJ et al (2017) Polymethacrylate coated electrospun PHB fibers as a functionalized platform for bio-diagnostics: confirmation analysis on the presence of immobilized IgG antibodies against Dengue virus. Sensors 17:2292CrossRefGoogle Scholar
  99. 99.
    Giri B, Dutta D (2014) Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product. Anal Chim Acta 810:32–38CrossRefGoogle Scholar
  100. 100.
    Al-Faqheri W, Ibrahim F, Thio THG, Aeinehvand MM, Arof H, Madou M (2015) Development of novel passive check valves for the microfluidic CD platform. Sens Actuators, A 222:245–254CrossRefGoogle Scholar
  101. 101.
    Aeinehvand MM, Ibrahim F, Harun SW, Djordjevic I, Hosseini S, Rothan HA et al (2015) Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms. Biosens Bioelectron 67:424–430CrossRefGoogle Scholar
  102. 102.
    Lee BS, Lee J-N, Park J-M, Lee J-G, Kim S, Cho Y-K et al (2009) A fully automated immunoassay from whole blood on a disc. Lab Chip 9:1548–1555CrossRefGoogle Scholar
  103. 103.
    Ukita Y, Utsumi Y, Takamura Y (2016) Direct digital manufacturing of a mini-centrifuge-driven centrifugal microfluidic device and demonstration of a smartphone-based colorimetric enzyme-linked immunosorbent assay. Anal Methods 8:256–262CrossRefGoogle Scholar
  104. 104.
    Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T (2014) Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics 8:064101CrossRefGoogle Scholar
  105. 105.
    Rissin DM, Kan CW, Song L, Rivnak AJ, Fishburn MW, Shao Q et al (2013) Multiplexed single molecule immunoassays. Lab Chip 13:2902–2911CrossRefGoogle Scholar
  106. 106.
    Toh SY, Citartan M, Gopinath SC, Tang T-H (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403CrossRefGoogle Scholar
  107. 107.
    Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A (2013) Low-cost technologies for medical diagnostics in low-resource settings. Expert opinion on medical diagnostics 7:243–255CrossRefGoogle Scholar
  108. 108.
    Jin C, Roen DR, Lehmann PV, Kellermann GH (2013) An enhanced ELISPOT assay for sensitive detection of antigen-specific T cell responses to Borrelia burgdorferi. Cells 2:607–620CrossRefGoogle Scholar
  109. 109.
    Barati N, Nikpoor AR, Razazan A, Mosaffa F, Badiee A, Arab A et al (2017) Nanoliposomes carrying HER2/neu-derived peptide AE36 with CpG-ODN exhibit therapeutic and prophylactic activities in a mice TUBO model of breast cancer. Immunol Lett 190:108–117CrossRefGoogle Scholar
  110. 110.
    Tanvarasethee B, Buranapraditkun S, KLAEwSONgKRAM J (2013) The potential of using enzyme-linked immunospot to diagnose cephalosporin-induced maculopapular exanthems. Acta dermato-venereologica 93:66–69Google Scholar
  111. 111.
    Phatharacharukul P, Klaewsongkram J (2013) A case of sulfasalazine-induced hypersensitivity syndrome confirmed by enzyme-linked immunospot assay. Allergy, Asthma & Immunol Res 5:415–417CrossRefGoogle Scholar
  112. 112.
    Chen J, Chen L, Zhang H, Quan Y (2017) Enhancing the antitumour-specific immunity of a lung DNA vaccine in vivo by fusion expression of MAGE-A3 and soluble PD-1. Biotechnol Biotechnol Equip 31:1064–1069CrossRefGoogle Scholar
  113. 113.
    Wang L, Liu Y, Huo J, Liu Y, Tian Y, Yang X et al (2017) Recombination plasmid carrying hcg and survivin combination IL-12 generates specific immune responses and anti-tumor effects in a murine breast carcinoma model. Int J Clin Exp Med 10:10676–10682Google Scholar
  114. 114.
    Hofland RW, Thijsen SF, van Lindert AS, de Lange WC, van Gorkom T, van der Tweel I et al (2017) Positive predictive value of ELISpot in BAL and pleural fluid from patients with suspected pulmonary tuberculosis. Infect Dis 49:347–355CrossRefGoogle Scholar
  115. 115.
    Yao C, Yu S, Li X, Wu Z, Liang J, Fu Q et al (2017) A plasmonic ELISA for the naked-eye detection of chromium ions in water samples. Anal Bioanal Chem 409:1093–1100CrossRefGoogle Scholar
  116. 116.
    Nie X-M, Huang R, Dong C-X, Tang L-J, Gui R, Jiang J-H (2014) Plasmonic ELISA for the ultrasensitive detection of Treponema pallidum. Biosens Bioelectron 58:314–319CrossRefGoogle Scholar
  117. 117.
    Peng C, Duan X, Khamba GW, Xie Z (2014) Highly sensitive “signal on” plasmonic ELISA for small molecules by the naked eye. Anal Methods 6:9616–9621CrossRefGoogle Scholar
  118. 118.
    Huang X, Chen R, Xu H, Lai W, Xiong Y (2016) Nanospherical brush as catalase container for enhancing the detection sensitivity of competitive plasmonic ELISA. Anal Chem 88:1951–1958CrossRefGoogle Scholar
  119. 119.
    De La Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824CrossRefGoogle Scholar
  120. 120.
    Cecchin D, De La Rica R, Bain R, Finnis MW, Stevens M, Battaglia G (2014) Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale 6:9559–9562CrossRefGoogle Scholar
  121. 121.
    Xuan Z, Li M, Rong P, Wang W, Li Y, Liu D (2016) Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 8:17271–17277CrossRefGoogle Scholar
  122. 122.
    Zhang Z, Chen Z, Wang S, Cheng F, Chen L (2015) Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphataseGoogle Scholar
  123. 123.
    Hu C, Zeimpekis I, Sun K, Anderson S, Ashburn P, Morgan H (2016) Low-cost nanoribbon sensors for protein analysis in human serum using a miniature bead-based enzyme-linked immunosorbent assay. Anal Chem 88:4872–4878CrossRefGoogle Scholar
  124. 124.
    Zhang X, Song M, Yu X, Wang Z, Ke Y, Jiang H et al (2017) Development of a new broad-specific monoclonal antibody with uniform affinity for aflatoxins and magnetic beads-based enzymatic immunoassay. Food Control 79:309–316CrossRefGoogle Scholar
  125. 125.
    Lin Y-H, Wang C-C, Lei KF (2014) Bubble-driven mixer integrated with a microfluidic bead-based ELISA for rapid bladder cancer biomarker detection. Biomed Microdevices 16:199–207CrossRefGoogle Scholar
  126. 126.
    Campbell J, Pollock NR, Sharon A, Sauer-Budge AF (2015) Development of an automated on-chip bead-based ELISA platform. Anal Methods 7:8472–8477CrossRefGoogle Scholar
  127. 127.
    Fritsche-Guenther R, Witzel F, Kempa S, Brummer T, Sers C, Blüthgen N (2016) Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis. Oncotarget 7:7960CrossRefGoogle Scholar
  128. 128.
    Arafat SN, Robert M-C, Abud T, Spurr-Michaud S, Amparo F, Dohlman CH et al (2017) Elevated neutrophil elastase in tears of ocular graft-versus-host disease patients. Am J Ophthalmol 176:46–52CrossRefGoogle Scholar
  129. 129.
    Hosseini S, Vázquez-Villegas P, Martínez-Chapa SO (2017) Paper and fiber-based bio-diagnostic platforms: current challenges and future needs. Appl Sci 7:863CrossRefGoogle Scholar
  130. 130.
    Ortega G, Pérez-Rodríguez S, Reguera E (2017) Magnetic paper–based ELISA for IgM-dengue detection. RSC Adv 7:4921–4932CrossRefGoogle Scholar
  131. 131.
    Wang S, Ge L, Song X, Yu J, Ge S, Huang J et al (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218CrossRefGoogle Scholar
  132. 132.
    Busin V, Burgess S, Shu W (2016) A novel multi-pad paper plate (MP 3) based assays for rapid animal disease diagnostics. Procedia Eng 168:1418–1421CrossRefGoogle Scholar
  133. 133.
    Li X, Nie Z, Cheng C, Goodale A, Whitesides G (2010) Paper-based electrochemical ELISA. Proc Micro Total Anal Syst 1487–1489Google Scholar
  134. 134.
    Tiwari S, Vinchurkar M, Rao VR, Garnier G (2017) Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Sci Rep 7Google Scholar
  135. 135.
    Chen C, Lin B-R, Wang H-K, Fan S-T, Hsu M-Y, Cheng C-M (2014) Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluid Nanofluid 16:849–856CrossRefGoogle Scholar
  136. 136.
    Hsu C-K, Huang H-Y, Chen W-R, Nishie W, Ujiie H, Natsuga K et al (2014) Paper-based ELISA for the detection of autoimmune antibodies in body fluid the case of bullous pemphigoid. Anal Chem 86:4605–4610CrossRefGoogle Scholar
  137. 137.
    Wang HK, Tsai CH, Chen KH, Tang CT, Leou JS, Li PC et al (2014) Cellulose-based diagnostic devices for diagnosing serotype-2 Dengue fever in human serum. Adv Healthcare Mater 3:187–196CrossRefGoogle Scholar
  138. 138.
    Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA (2013) Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem 85:11634–11642CrossRefGoogle Scholar
  139. 139.
    Mazzu-Nascimento T, Morbioli GG, Milan LA, Silva DF, Donofrio FC, Mestriner CA et al (2017) Improved assessment of accuracy and performance indicators in paper-based ELISA. Anal Methods 9:2644–2653CrossRefGoogle Scholar
  140. 140.
    Hsu M-Y, Hung Y-C, Hwang D-K, Lin S-C, Lin K-H, Wang C-Y et al (2016) Detection of aqueous VEGF concentrations before and after intravitreal injection of anti-VEGF antibody using low-volume sampling paper-based ELISA. Sci Rep 6:34631CrossRefGoogle Scholar
  141. 141.
    Khan MS, Pande T, van de Ven TG (2015) Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA. Colloids Surf B Biointerfaces 132:264–270CrossRefGoogle Scholar
  142. 142.
    Shih C-M, Chang C-L, Hsu M-Y, Lin J-Y, Kuan C-M, Wang H-K et al (2015) Paper-based ELISA to rapidly detect Escherichia coli. Talanta 145:2–5CrossRefGoogle Scholar
  143. 143.
    Jones K (2009) FUSION 5: a new platform for lateral flow immunoassay tests. Lateral flow immunoassay. Springer, Berlin, pp 1–15Google Scholar
  144. 144.
    Yang M, Sun S, Kostov Y, Rasooly A (2011) An automated point-of-care system for immunodetection of staphylococcal enterotoxin B. Anal Biochem 416:74–81CrossRefGoogle Scholar
  145. 145.
    Moschou D, Greathead L, Pantelidis P, Kelleher P, Morgan H, Prodromakis T (2016) Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes. Biosens Bioelectron 86:805–810CrossRefGoogle Scholar
  146. 146.
    Liu D, Li X, Zhou J, Liu S, Tian T, Song Y et al (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338CrossRefGoogle Scholar
  147. 147.
    Novo P, Moulas G, Chu V, Conde J (2012) Lab-on-chip prototype platform for ochratoxin a detection in wine and beer. Procedia Eng 47:550–553CrossRefGoogle Scholar
  148. 148.
    Novo P, Prazeres DMF, Chu V, Conde JP (2011) Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab Chip 11:4063–4071CrossRefGoogle Scholar
  149. 149.
    Thiha A, Ibrahim F (2015) A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care Dengue detection system on a lab-on-compact-disc. Sensors 15:11431–11441CrossRefGoogle Scholar
  150. 150.
    Yuan Y, He H, Lee LJ (2009) Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay. Biotechnol Bioeng 102:891–901CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Samira Hosseini
    • 1
    Email author
  • Patricia Vázquez-Villegas
    • 1
  • Marco Rito-Palomares
    • 2
  • Sergio O. Martinez-Chapa
    • 1
  1. 1.Escuela de Ingeniería y CienciasTecnologico de MonterreyMonterreyMexico
  2. 2.Escuela de Medicina y Ciencias de SaludTecnologico de MonterreyMonterreyMexico

Personalised recommendations